Skip to main content

Advertisement

Log in

Polycystic ovary syndrome: etiology and pathogenesis

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Objective: To provide a review of the pathogenesis of polycystic ovary syndrome. Design: Literature survey. Result(s): Three major pathophysiologic hypotheses have been proposed to explain the clinical findings of polycystic ovary syndrome (PCOS) related to three major laboratory findings: the LH hypothesis, the insulin hypothesis and the ovarian hypothesis. Although the presence of many small follicles with a high androgen to estrogen ratio was first thought to represent a high rate of follicular atresia in polycystic ovaries, recent studies have demonstrated that the granulosa cells are viable and able to respond to FSH stimulation with normal increases in estradiol production. Thus, a new hypothesis has arisen that FSH activity is somehow blocked at the ovarian level. Conclusion(s): PCOS is a syndrome involving defects in primary cellular control mechanisms that result in the expression of chronic anovulation and hyperandrogenism. In this syndrome, the relation between the various parameters is of particular interest. These relations constitute the cornerstone of the pathogenesis of PCOS. The fact that the pathogenesis of PCOS has not yet been clarified, despite the plethora of relative information, may be the result of a general way of thinking in the interpretation of several scientific data, and especially those that refer to biochemical phenomena. The use of the various models of the theory of chaos, that permits a concrete approach for the interpretation of data, may constitute an optional procedure for the future understanding of the association of different parameters and their disturbances in the pathogenesis of the polycystic ovary syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stein IF, Leventhal ML (1935) Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol 29:181–188

    Google Scholar 

  2. Insler V, Lunenfeld B (1991) Pathophysiology of polycystic ovarian disease: new insights. Hum Reprod 6:1025–1029

    PubMed  CAS  Google Scholar 

  3. Taylor AE (1998) Polycystic ovary syndrome. Endocr Metab Clin N Am 27:877–903

    Article  CAS  Google Scholar 

  4. Franks S, Gharani N, Waterworth D, Batty S, White D, Williamson R, McCarthy M (1998) Current developments in the molecular genetics of the polycystic ovary syndrome. Trends Endocr Metab 9:51–56

    Article  CAS  Google Scholar 

  5. Yen SSC, Vela P, Rankin J (1970) Inappropriate secretion of follicle stimulating hormone and luteinizing hormone in polycystic ovarian disease. J Clin Endocrinol Metab 30:435–42

    PubMed  CAS  Google Scholar 

  6. Krnjevic K (1974) Chemical nature of synaptic transmission in vertebrates. Physiol Rev 54:418–421

    CAS  Google Scholar 

  7. Florey E (1967) Neurotransmitters and modulators in the animal kingdom. Fed Proc 26:1164–1168

    PubMed  CAS  Google Scholar 

  8. Alves SE, Lopez V, McEven BS, Weiland NS (1998) Differential colocalization of estrogen receptor beta (ERbeta) with oxytocin and vasopresssin in the paraventricular and supraortic nuclei of the female rat brain: an immunocytochemical study. Proc Natl Acad Sci USA 95:3281–3286

    Article  PubMed  CAS  Google Scholar 

  9. Greco B, Edwards DA, Michae RP, Clancy AN (1998) Androgen receptors and estrogen receptors are colocalized in male rat hypothalamic and limbic neurons that express Fos Immunoreactivity induced by mating. Neuroendocrinology 67:18–28

    Article  PubMed  CAS  Google Scholar 

  10. Paganini-Hill A, Henderson VW (1994) Estrogen deficiency and risk of Alzheimer’s disease. Am J Epidemiol 140:256–261

    PubMed  CAS  Google Scholar 

  11. Panidis D, Matalliotakis I, Rousso D, Kourtis A, Koumantakis E (2001) The role of estrogen replacement therapy in Alzheimer’s disease. Eur J Obstet Gynecol Reprod Biol 95:86–91

    Article  PubMed  CAS  Google Scholar 

  12. Pinkerton JV, Henderson VW (2005) Estrogen and cognition, with a focus on Alzheimer’s disease. Semin Reprod Med 23:172–179

    Article  PubMed  CAS  Google Scholar 

  13. MacLusky NJ (2004) Estrogen and Alzheimer’s disease: the apolipoprotein connection. Endocrinology 145:3062–3064

    Article  PubMed  CAS  Google Scholar 

  14. Green PS, Bishop J, Simpkins JW (1997) 17α-Estradiol exerts neuroprotective effects on SK-N-SH cells. J Neurosci 17:511–515

    PubMed  CAS  Google Scholar 

  15. Henderson VW (1997) The epidemiology of estrogen replacement therapy and Alzheimer’s disease. Neurology 48:27–35

    Google Scholar 

  16. Shah RD, Anderson KL, Rapoport M, Ferreira A (2003) Estrogen-induced changes in the microtubular system correlate with a decreased susceptibility of aging neurons to beta amyloid neurotoxicity. Mol Cell Neurosci 24:503–516

    Article  PubMed  CAS  Google Scholar 

  17. Paganini-Hill A (1996) Oestrogen replacement therapy and Alzheimer’s disease. Br J Obstet Gynaecol 103(Suppl 13):80–86

    PubMed  Google Scholar 

  18. Paganini-Hill A (1997) Does estrogen replacement therapy protect against Alzheimer’s disease? Osteoporosis Int (Suppl) 1:512–517

    Google Scholar 

  19. Naftolin F, Brawer JR (1978) The effect of estrogens on hypothalamic structure and function. Am J Obstet Gynecol 132:758–765

    PubMed  CAS  Google Scholar 

  20. Finch EC, Felicio LS, Mobbs CV, Nelson JF (1984) Ovarian and steroid influences on neuroendocrine aging process in the female rodent. Endocrinol Rev 5:467–497

    Article  CAS  Google Scholar 

  21. Naftolin F, Maclusky NJ, Leranth C, Sakamoto HS, Garcia-Segura LM (1988) The cellular effects of estrogens on neuroendocrine tissues. J Steroid Biochem 30:195–207

    Article  PubMed  CAS  Google Scholar 

  22. Matsumoto A, Arai Y (1981) Neuronal plasticity in the differentiated hypothalamic arcuate nucleus of adult female rats and its enhancement by treatment with estrogen. J Comp Neurol 197:197–205

    Article  PubMed  CAS  Google Scholar 

  23. Garcia-Segura LM, Hernandez P, Olmos G, Tranque PA, Naftolin F (1988) Neuronal membrane remodeling during the oestrus cycle: a freeze fracture study in the arcuate nucleus of the rat hypothalamus. J Neurocytol 17:377–383

    Article  PubMed  CAS  Google Scholar 

  24. Naftolin F, Garcia-Secura LM, Keefe C, Leranth C, Maclusky NJ, Brawer JR (1990) Estrogen effects on the synaptology and neural membranes of the rat hypothalamic arcuate nucleus. Biol Reprod 41:21–28

    Article  Google Scholar 

  25. Marshall J (1998) Regulation of gonadotropin secretion in PCOS. In: Program and abstracts of the international conference on the polycystic ovary syndrome, Athens 21

  26. Spratt DI, Finkelstein JS, Butler JP et al (1987) Effects of increasing the frequency of low doses of gonadotropin-releasing hormone (GnRH) on gonadotropin secretion in GnRH-deficient men. J Clin Endocrinol Metab 64:1179–1186

    PubMed  CAS  Google Scholar 

  27. Hall JE, Taylor AE, Martin KA, Rivier J, Schoenfeld DA, Crowley WF (1994) Decreased release of gonadotropin-releasing hormone during the preovulatory midcycle luteinizing hormone surge in normal women. Proc Natl Acad Sci USA 91:6894–6898

    Article  PubMed  CAS  Google Scholar 

  28. Hayes FJ, Taylor AE, Martin KA, Hall JE (1998) Use of a GnRH antagonist as a physiologic probe in polycystic ovary syndrome: Assessment of the neuroendocrine and androgen dynamics. J Clin Endocrinol Metab 83:2343–2349

    Article  PubMed  CAS  Google Scholar 

  29. Nestler JE (1998) Polycystic ovary syndrome: a disorder for the generalist. Fertil Steril 70:811–812

    Article  PubMed  CAS  Google Scholar 

  30. Pugeat M, Ducluzeau PH (1999) Insulin resistance, polycystic ovary syndrome and metformin. Drugs 58(Suppl 1):41–46

    Article  PubMed  CAS  Google Scholar 

  31. Legro RS, Gnatuk CL, Kunselman AR, Dunaif A (2005) Changes in glucose tolerance over time in women with polycystic ovary syndrome: a controlled study. J Clin Endocrinol Metab 90(6):3236–3242

    Article  PubMed  CAS  Google Scholar 

  32. Song SH, Rhodes CJ, Veldhuis JD, Butler PC (2003) Diazoxide attenuates glucose-induced defects in first-phase insulin release and pulsatile insulin secretion in human islets. Endocrinology 144:3399–3405

    Article  PubMed  CAS  Google Scholar 

  33. Panidis D, Skiadopoulos S, Rousso D, Ioannides D, Panidou E (1995) Association of acanthosis nigricans with insulin resistance in polycystic ovary syndrome. Br J Dermatol 132:936–941

    Article  PubMed  CAS  Google Scholar 

  34. Panidis DK, Rousso DH, Matalliotakis IM, Kourtis AI, Vlassis GD, Koumantakis EE (1999) Hyperinsulinemia does not influence androgens/estrogens ratio in patients with polycystic ovary syndrome. Int J Fertil Womens Med 44:301–306

    PubMed  CAS  Google Scholar 

  35. Remsberg KE, Talbott EO, Zborowski JV, Evans RW, McHugh-Pemu K (2002) Evidence for competing effects of body mass, hyperinsulinemia, insulin resistance, and androgens on leptin levels among lean, overweight, and obese women with polycystic ovary syndrome. Fertil Steril 78:479–486

    Article  PubMed  Google Scholar 

  36. Nestler JE, Jakubowicz DJ, Evans WS, Pasquali R (1998) Effects of metformin on spontaneous and clomiphene-induced ovulation in the polycystic ovary syndrome. N Engl J Med 338:1876–1880

    Article  PubMed  CAS  Google Scholar 

  37. Glueck CJ, Philips H, Cameron D, Sieve-Smith L, Wang P (2001) Continuing metformin throughout pregnancy in women with polycystic ovary syndrome appears to safely reduce first-trimester spontaneous abortion: a pilot study. Fertil Steril 75:46–52

    Article  PubMed  CAS  Google Scholar 

  38. Vandermolen DT, Ratts VS, Evans WS, Stovall DW, Kauma SW, Nestler JE (2001) Metformin increases the ovulatory rate and pregnancy rate from clomiphene citrate in patients with polycystic syndrome who are resistent to clomiphene citrate alone. Fertil Steril 75:310–315

    Article  PubMed  CAS  Google Scholar 

  39. Cicek MN, Bala A, Celik C, Akyurek C (2003) The comparison of clinical and hormonal parameters in PCOS patients treated with metformin and GnRH analogue. Arch Gynecol Obstet 268(2):107–112

    PubMed  CAS  Google Scholar 

  40. Poretsky L, Grigorescu F, Seibel M, Moses AC, Flier JS (1985) Distribution and characterization of insulin and insulin-like growth factor I receptors in normal human ovary. J Clin Endocrinol Metab 61:728–734

    Article  PubMed  CAS  Google Scholar 

  41. Nestler JE, Jakubowicz DJ, de Vargas AF, Brik C, Quintero N, Medina F (1998) Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab 83:2001–2005

    Article  PubMed  CAS  Google Scholar 

  42. Moxham CP, Duronio V, Jacobs S (1989) Insulin-like growth factor I receptor beta-subunit heterogeneity: Evidence for hybrid tetramers composed of insulin-like growth factor I and insulin receptor heterodimers. J Biol Chem 264:13238–13244

    PubMed  CAS  Google Scholar 

  43. Willis D, Franks S (1995) Insulin action in human granulosa cells from normal and polycystic ovaries is mediated by the insulin receptor and not the type-I insulin-like growth factor receptor. J Clin Endocrinol Metab 80:3788–3790

    Article  PubMed  CAS  Google Scholar 

  44. Schroder AK, Tauchert S, Ortmann O, Diedrich K, Weiss JM (2004) Insulin resistance in patients with polycystic ovary syndrome. Ann Med 36:426–439

    Article  PubMed  CAS  Google Scholar 

  45. Weiss JM, Polack S, Diedrich K, Ortmann O (2003) Effects of insulin on luteinising hormone and prolactin secretion and calcium signalling in female rat pituitary cells. Arch Gynecol Obstet 269(1):45–50

    Article  PubMed  CAS  Google Scholar 

  46. Patel K, Coffler MS, Dahan MH, Yoo RY, Lawson MA, Malcom PJ, Chang RJ (2003) Increased luteinizing hormone secretion in women with polycystic ovary syndrome is unaltered by prolonged insulin infusion. J Clin Endocrinol Metab 88(11):5456–5461

    Article  PubMed  CAS  Google Scholar 

  47. Belli SH, Graffigna MN, Oneto A, Otero P, Schurman L, Levalle OA (2004) Effect of rosiglitazone on insulin resistance, growth factors, and reproductive disturbances in women with polycystic ovary syndrome. Fertil Steril 81:624–629

    Article  PubMed  CAS  Google Scholar 

  48. Pasquali R, Antenucci D, Casimirri F, Ventruoli S, Paradisi R, Fabbri R, Balestra V, Melchionda N, Barbara L (1989) Clinical and hormonal characteristics of obese amenorrheic hyperandrogenic women before and after weight loss. J Clin Endocrinol Metab 68:173–179

    PubMed  CAS  Google Scholar 

  49. Kiddy DS, Hamilton-Fairley D, Bush A, Short F, Anyaoku V, Reed MJ, Franks S (1992) Improvement in endocrine and ovarian function during dietary treatment of obese women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 36:105–111

    Article  CAS  Google Scholar 

  50. Nestler JE, Jakubowicz DJ (1996) Decreases in ovarian cytochrome P450c17-alpha activity and serum free testosterone after reduction of insulin secretion in polycystic ovary syndrome. N Engl J Med 335:617–623

    Article  PubMed  CAS  Google Scholar 

  51. Kumari AS, Haq A, Jayasundaram R, Abdel-Wareth LO, Al Haija SA, Alvares M (2005) Metformin monotherapy in lean women with polycystic ovary syndrome. Reprod Biomed Online 10:100–104

    Article  PubMed  CAS  Google Scholar 

  52. Morin-Papunen LC, Vauhkonen I, Koivunen RM, Ruokonen A, Martikainen HK, Tapainen JS (2000) Endocrine and metabolic effects of metformin versus ethinyl estradiol-cyproterone acetate in obese women with polycystic ovary syndrome: a randomized study. J Clin Endocrinol Metab 85:3161–3168

    Article  PubMed  CAS  Google Scholar 

  53. Azziz R, Ehrmann DA, Legro RS, Fereshetian AG, O’Keefe M, Ghazzi MN (2003) PCOS/Troglitazone Study Group. Troglitazone decreases adrenal androgen levels in women with polycystic ovary syndrome. Fertil Steril 79:932–937

    Article  PubMed  Google Scholar 

  54. Ehrmann DA, Schneider DJ, Sobel BE, Cavaghan MK, Imperial J, Rosenfield RI, Polonsky KS (1997) Troglitazone improves defects in insulin action, insulin secretion, ovarian steroidogenesis, and fibrinolysis in women with polycystic ovary syndrome. J Clin Endocrinol Metab 82:2108–2116

    Article  PubMed  CAS  Google Scholar 

  55. Sanaka M, Iwamoto Y (2000) Troglitazone for treatment of polycystic ovary syndrome. Nippon Rinsho 58:465–470

    PubMed  CAS  Google Scholar 

  56. Gilling-Smith C, Willis DS, Beard RW, Franks S (1994) Hypersecretion of androstenedione by isolated theca cells from polycystic ovaries. J Clin Endocrinol Metab 79:1158–1165

    Article  PubMed  CAS  Google Scholar 

  57. Ibanez L, Hall JE, Potau N, Carrascosa A, Prat N, Taylor AE (1996) Ovarian 17-hydroxyprogesterone hyperresponsiveness to gonadotropin-releasing hormone (GnRH) agonist challenge in women with polycystic ovary syndrome is not mediated by luteinizing hormone hypersecretion: evidence from GnRH agonist and human chorionic gonadotropin stimulation testing. J Clin Endocrinol Metab 81:4103–4107

    Article  PubMed  CAS  Google Scholar 

  58. Levrant SG, Barnes RB, Rosenfield RL (1997) A pilot study of the human chorionic gonadotrophin test for ovarian hyperandrogenism. Hum Reprod 12:1416–1420

    Article  PubMed  CAS  Google Scholar 

  59. Gilling-Smith C, Story H, Rogers V, Franks S (1997) Evidence for a primary abnormality of thecal cell steroidogenesis in the polycystic ovary syndrome. Clin Endocrinol 47:93–99

    Article  CAS  Google Scholar 

  60. Rosenfield RL (1997) Is polycystic ovary syndrome a neuroendocrine or an ovarian disorder? Clin Endocrinol (Oxf) 47:423–424

    Article  CAS  Google Scholar 

  61. Legro RS, Chiu P, Kunselman AR, Bentley CM, Dodson WC, Dunaif A (2005) Polycystic ovaries are common in women with hyperandrogenic chronic anovulation but do not predict metabolic or reproductive phenotype. J Clin Endocrinol Metab 90(5):2571–2579

    Article  PubMed  CAS  Google Scholar 

  62. Sahin Y, Kelestimur F (1993) 17-Hydroxyprogesterone response to buserelin testing in the polycystic ovary syndrome. Clin Endocrinol (Oxf) 39:151–155

    Article  CAS  Google Scholar 

  63. Ehrmann DA, Rosenfield RL, Barnes RB, Brigell DF, Sheikh Z (1992) Detection of functional ovarian hyperandrogenism in women with androgen excess. N Engl J Med 327:157–162

    Article  PubMed  CAS  Google Scholar 

  64. Fauser BC, Pache TD, Lamberts SW, Hop WC, de Jong FH, Dahl KD (1991) Serum bioactive and immunoreactive luteinizing hormone and follicle-stimulating hormone levels in women with cycle abnormalities, with or without polycystic ovarian disease. J Clin Endocrinol Metab 73:811–817

    PubMed  CAS  Google Scholar 

  65. Imse V, Holzapfel G, Hinney B, Kuhn W, Wuttke W (1992) Comparison of luteinizing hormone pulsatility in the serum of women suffering from polycystic ovarian disease using a bioassay and five different immunoassays. J Clin Endocrinol Metab 74:1053–1061

    Article  PubMed  CAS  Google Scholar 

  66. Arroyo A, Laughlin GA, Morales AJ, Yen SS (1997) Inappropriate gonadotropin secretion in polycystic ovary syndrome: influence of adiposity. J Clin Endocrinol Metab 82:3728–3733

    Article  PubMed  CAS  Google Scholar 

  67. Taylor AE, McCourt B, Martin KA, Anderson EJ, Adams JM, Schoenfeld D, Hall JE (1997) Determinants of abnormal gonadotropin secretion in clinically defined women with polycystic ovary syndrome. J Clin Endocrinol Metab 82:2248–2256

    Article  PubMed  CAS  Google Scholar 

  68. Rosenfield R (1999) Ovarian and adrenal function in polycystic ovarian syndrome. Endocrinol Metab Clin 28:265–293

    Article  CAS  Google Scholar 

  69. Cara JF, Fan J, Azzarello J, Rosenfield RL (1990) Insulin-like growth factor-I enhances luteinizing hormone binding to rat ovarian theca-interstitial cells. J Clin Invest 86:560–565

    Article  PubMed  CAS  Google Scholar 

  70. Rosenfield RL, Barnes RB, Ehrmann DA (1994) Studies of the nature of 17-hydroxyprogesterone hyperresonsiveness to gonadotropin-releasing hormone agonist challenge in functional ovarian hyperandrogenism. J Clin Endocrinol Metab 79:1686–1692

    Article  PubMed  CAS  Google Scholar 

  71. Matthews CH, Borgato S, Beck-Peccoz P, Adams M, Tone Y, Gambino G, Casagrande S, Tedeschini G, Benedetti A, Chatterjee VK (1993) Primary amenorrhea and infertility due to a mutation in the beta-subunit of follicle-stimulating hormone. Nat Genet 5:83–86

    Article  PubMed  CAS  Google Scholar 

  72. Shoham Z, Conway GS, Patel A, Jacobs HS (1992) Polycystic ovaries in patients with hypogonadotropic hypogonadism: similarity of ovarian response to gonadotropin stimulation in patients with polycystic ovarian syndrome. Fertil Steril 58:37–45

    PubMed  CAS  Google Scholar 

  73. Prelevic GM, Wurzburger MI, Balint-Peric L, Nesic JS (1990) Inhibitory effect of sandostatin on secretion of luteinising hormone and ovarian steroids in polycystic ovary syndrome. Lancet 336:900–903

    Article  PubMed  CAS  Google Scholar 

  74. Willis DS, Watson H, Mason HD, Galea R, Brincat M, Franks S (1998) Premature response to luteinizing hormone of granulosa cells from anovulatory women with polycystic ovary syndrome: relevance to mechanism of anovulation. J Clin Endocrinol Metab 83:3984–3991

    Article  PubMed  CAS  Google Scholar 

  75. Duleba AJ, Spaczynski RZ, Olive DL (1998) Insulin and insulin-like growth factor I stimulate the proliferation of human ovarian theca-interstitial cells. Fertil Steril 69:335–340

    Article  PubMed  CAS  Google Scholar 

  76. Magarelli PC, Zachow RJ, Magoffin DA (1996) Developmental and hormonal regulation of rat theca-cell differentiation factor secretion in ovarian follicles. Biol Reprod 55:416–420

    Article  PubMed  CAS  Google Scholar 

  77. Smyth CD, Miro F, Whitelaw PF, Howles CM, Hillier SG (1993) Ovarian thecal/interstitial androgen synthesis is enhanced by a follicle-stimulating hormone-stimulated paracrine mechanism. Endocrinology 133:1532–1538

    Article  PubMed  CAS  Google Scholar 

  78. Layman LC, Peak DB, Xie J, Sohn SH, Reindollar RH, Gray MR (1997) Mutation analysis of the gonadotropin-releasing hormone receptor gene in idiopathic hypogonadotropic hypogonadism. Fertil Steril 68:1079–1085

    Article  PubMed  CAS  Google Scholar 

  79. Rabin D, Spitz I, Bercovici B, Bell J, Laufer A, Benveniste R, Polishuk W (1972) Isolated deficiency of follicle-stimulating hormone. Clinical and laboratory features. N Engl J Med 287:1313–1317

    Article  PubMed  CAS  Google Scholar 

  80. Magoffin DA (1989) Evidence that luteinizing hormone-stimulated differentiation of purified ovarian thecal-interstitial cells is mediated by both type I and type II adenosine 3’, 5’-monophosphate-dependent protein kinases. Endocrinology 125:1464–1473

    PubMed  CAS  Google Scholar 

  81. Loh S, Wang JX, Matthews CD (2002) The influence of body mass index, basal FSH and age on the response to gonadotrophin stimulation in non-polycystic ovarian syndrome patients. Hum Reprod 17:1207–1211

    Article  PubMed  CAS  Google Scholar 

  82. Pang SY, Softness B, Sweeney WJ III, New MI (1987) Hirsutism, polycystic ovarian disease, and ovarian 17-ketosteroid reductase deficiency. N Engl J Med 316:1295–1301

    Article  PubMed  CAS  Google Scholar 

  83. Gjonaess H (1994) Ovarian electrocautery in the treatment of women with polycystic ovary syndrome (PCOS). Acta Obstet Gynecol Scand 73:407–412

    Article  Google Scholar 

  84. Gleick J (1998) Inner rhythms. In: Chaos (ed) Vintage books, New York, pp 273–300

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Matalliotakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matalliotakis, I., Kourtis, A., Koukoura, O. et al. Polycystic ovary syndrome: etiology and pathogenesis. Arch Gynecol Obstet 274, 187–197 (2006). https://doi.org/10.1007/s00404-006-0171-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-006-0171-x

Keywords

Navigation