Skip to main content

Advertisement

Log in

The role of PI3K/AKT/FOXO signaling in psoriasis

  • Review
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) signaling pathway play a central role in multiple cellular functions such as cell proliferation and survival. The forkhead box O (FOXO) transcription factors are negatively regulated by the PI3K/AKT signaling pathway and considered to have inhibitory effect on cell proliferation. Psoriasis is a multifactorial disease with a strong genetic background and characterized by hyperproliferative keratinocyte. PI3K signaling regulates proliferation of keratinocyte by activating AKT and other targets, and by inducing FOXO downregulation. The amplification of PI3K and AKT and the loss of the FOXO are gradually being recognized in psoriatic lesions. The upstream and downstream of PI3K/AKT signaling molecules such as tumor suppressor phosphatase and tensin homolog (PTEN) and mammalian target of Rapamycin (mTOR), respectively, are also frequently altered in psoriasis. In this review, we highlight the recent studies on the roles and mechanisms of PI3K and AKT in regulating hyperproliferation of keratinocyte, and the roles of the downstream targets FOXO in psoriasis. Finally, we summarized that PI3K/AKT/FOXO signaling and its upstream and downstream molecule which could be underlying therapeutic target for psoriasis. This article is part of a special issue entitled: PI3K–AKT–FOXO axis in psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

PI3K:

Phosphatidylinositol-4,5-bisphosphate 3-kinase

AKT/PKB:

Protein kinase B

FOXO:

Forkhead box O

PTEN:

Phosphatase and tensin homolog

mTOR:

Mammalian target of Rapamycin complex

PDK1:

Phosphoinositide-dependent kinase-1

GFR:

Growth factor receptor

PH:

Pleckstrin homology

PIP3:

Phosphatidylinositol 3–5 triphosphate

AFX:

Acute-lymphocytic-leukemia-1 fused gene from chromosome X

FKHR:

Forkhead in rhabdomyosarcoma

FKHR-L1:

FKHR-like 1

IL-22:

Interleukin 22

FasL:

Fas ligand

TRAIL:

TNF-related apoptosis-inducing ligand

TRADD:

TNF receptor type 1 associated death domain

BCL2:

B-cell lymphoma 2

BIM:

Bcl-2-like protein 11

BAD:

Bcl-2-associated death promoter

FLS:

Synovial cells

NHEK:

Normal human epidermal keratinocyte

IMQ:

Imiquimod

ROS:

Reactive oxygen species

References

  1. Aksamitiene E, Kiyatkin A, Kholodenko BN (2012) Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 40:139–146

    Article  CAS  PubMed  Google Scholar 

  2. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R et al (2009) Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 11:R46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Albert V, Hall MN (2015) mTOR signaling in cellular and organismal energetics. Curr Opin Cell Biol 33:55–66

    Article  CAS  PubMed  Google Scholar 

  4. Amin AG, Wang A, Braun A, Tobias M, Murali R et al (2017) Abstract 3125: Therapeutic implications of mTORC1 and mTORC2 inhibitors in genetically heterogeneous glioblastoma. Can Res 77:3125–3125

    Article  CAS  Google Scholar 

  5. Balato A, Caprio RD, Lembo S, Mattii M, Megna M et al (2014) Mammalian target of rapamycin in inflammatory skin conditions. Eur J Inflamm 12:341–350

    Article  CAS  Google Scholar 

  6. Balato A, Lembo S, Ayala F, Balato N, Caiazzo G et al (2017) Mechanistic target of rapamycin complex 1 is involved in psoriasis and regulated by anti-TNF-alpha treatment. Exp Dermatol 26:325–327

    Article  PubMed  Google Scholar 

  7. Bao S, Ouyang G, Bai X, Huang Z, Ma C et al (2004) Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5:329–339

    Article  CAS  PubMed  Google Scholar 

  8. Birkenkamp KU, Coffer PJ (2003) Regulation of cell survival and proliferation by the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors. Biochem Soc Trans 31:292–297

    Article  CAS  PubMed  Google Scholar 

  9. Bradley AW, James ED, Charles JM (2011) New organ-specific pharmacological strategies interfering with signaling pathways in inflammatory disorders/autoimmune disorders. Curr Signal Transduct Ther 6:279–291

    Article  Google Scholar 

  10. Brazil DP, Hemmings BA (2001) Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 26:657–664

    Article  CAS  PubMed  Google Scholar 

  11. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  CAS  PubMed  Google Scholar 

  12. Brunet A, Kanai F, Stehn J, Xu J, Sarbassova D et al (2002) 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol 156:817–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Buerger C, Malisiewicz B, Eiser A, Hardt K, Boehncke WH (2013) Mammalian target of rapamycin and its downstream signalling components are activated in psoriatic skin. Br J Dermatol 169:156–159

    Article  CAS  PubMed  Google Scholar 

  14. Buerger C, Shirsath N, Lang V, Berard A, Diehl S et al (2017) Inflammation dependent mTORC1 signaling interferes with the switch from keratinocyte proliferation to differentiation. PLoS One 12:e0180853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burger C, Shirsath N, Lang V, Diehl S, Kaufmann R et al (2017) Blocking mTOR Signalling with Rapamycin ameliorates Imiquimod-induced Psoriasis in Mice. Acta Derm Venereol 97:1087–1094

    Article  CAS  PubMed  Google Scholar 

  16. Burgering BM (2008) A brief introduction to FOXOlogy. Oncogene 27:2258–2262

    Article  CAS  PubMed  Google Scholar 

  17. Burgering BM, Kops GJ (2002) Cell cycle and death control: long live Forkheads. Trends Biochem Sci 27:352–360

    Article  CAS  PubMed  Google Scholar 

  18. Burgering BM, Medema RH (2003) Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol 73:689–701

    Article  CAS  PubMed  Google Scholar 

  19. Calautti E, Li J, Saoncella S, Brissette JL, Goetinck PF (2005) Phosphoinositide 3-kinase signaling to Akt promotes keratinocyte differentiation versus death. J Biol Chem 280:32856–32865

    Article  CAS  PubMed  Google Scholar 

  20. Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27:2276–2288

    Article  CAS  PubMed  Google Scholar 

  21. Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657

    Article  CAS  PubMed  Google Scholar 

  22. Carracedo A, Alimonti A, Pandolfi PP (2011) PTEN level in tumor suppression: how much is too little? Cancer Res 71:629–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chamcheu JC, Adhami VM, Esnault S, Sechi M, Siddiqui IA et al (2017) Dual Inhibition of PI3K/Akt and mTOR by the dietary antioxidant, delphinidin, ameliorates psoriatic features in vitro and in an imiquimod-induced psoriasis-like disease in mice. Antioxid Redox Signal 26:49–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chamcheu JC, Chaves-Rodriquez MI, Adhami VM, Siddiqui IA, Wood GS et al (2016) Upregulation of PI3K/AKT/mTOR, FABP5 and PPARbeta/delta in human psoriasis and imiquimod-induced murine psoriasiform dermatitis model. Acta Derm Venereol 96:854–856

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chamcheu JC, Pal HC, Siddiqui IA, Adhami VM, Ayehunie S et al (2015) Prodifferentiation, anti-inflammatory and antiproliferative effects of delphinidin, a dietary anthocyanidin, in a full-thickness three-dimensional reconstituted human skin model of psoriasis. Skin Pharmacol Physiol 28:177–188

    Article  CAS  PubMed  Google Scholar 

  26. Chen L, Wu J, Pier E, Zhao Y, Shen Z (2013) mTORC2-PKBalpha/Akt1 Serine 473 phosphorylation axis is essential for regulation of FOXP3 stability by chemokine CCL3 in psoriasis. J Invest Dermatol 133:418–428

    Article  CAS  PubMed  Google Scholar 

  27. Chen SJ, Nakahara T, Takahara M, Kido M, Dugu L et al (2009) Activation of the mammalian target of rapamycin signalling pathway in epidermal tumours and its correlation with cyclin-dependent kinase 2. Br J Dermatol 160:442–445

    Article  PubMed  Google Scholar 

  28. Christophers E (2001) Psoriasis–epidemiology and clinical spectrum. Clin Exp Dermatol 26:314–320

    Article  CAS  PubMed  Google Scholar 

  29. Coffre M, Benhamou D, Riess D, Blumenberg L, Snetkova V et al (2016) miRNAs are essential for the regulation of the PI3K/AKT/FOXO pathway and receptor editing during B cell maturation. Cell Rep 17:2271–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Datta Mitra A, Raychaudhuri SP, Abria CJ, Mitra A, Wright R et al (2013) 1alpha,25-Dihydroxyvitamin-D3-3-bromoacetate regulates AKT/mTOR signaling cascades: a therapeutic agent for psoriasis. J Invest Dermatol 133:1556–1564

    Article  CAS  PubMed  Google Scholar 

  31. Deane JA, Fruman DA (2004) Phosphoinositide 3-kinase: diverse roles in immune cell activation. Annu Rev Immunol 22:563–598

    Article  CAS  PubMed  Google Scholar 

  32. Diehl JA, Cheng M, Roussel MF, Sherr CJ (1998) Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12:3499–3511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ding X, Bloch W, Iden S, Ruegg MA, Hall MN et al (2016) mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation. Nat Commun 7:13226

    Article  PubMed  PubMed Central  Google Scholar 

  34. Downward J (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10:262–267

    Article  CAS  PubMed  Google Scholar 

  35. Eijkelenboom A, Burgering BM (2013) FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol 14:83–97

    Article  CAS  PubMed  Google Scholar 

  36. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619

    Article  CAS  PubMed  Google Scholar 

  37. Essafi A, Gomes AR, Pomeranz KM, Zwolinska AK, Varshochi R et al (2009) Studying the subcellular localization and DNA-binding activity of FoxO transcription factors, downstream effectors of PI3K/Akt. Methods Mol Biol 462:201–211

    CAS  PubMed  Google Scholar 

  38. Faivre S, Kroemer G, Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5:671–688

    Article  CAS  PubMed  Google Scholar 

  39. Florek AG, Wang CJ, Armstrong AW (2018) Treatment preferences and treatment satisfaction among psoriasis patients: a systematic review. Arch Dermatol Res 310:271–319

    Article  PubMed  Google Scholar 

  40. Frigerio E, Colombo MD, Franchi C, Altomare A, Garutti C et al (2007) Severe psoriasis treated with a new macrolide: everolimus. Br J Dermatol 156:372–374

    Article  CAS  PubMed  Google Scholar 

  41. Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC et al (2017) The PI3K pathway in human disease. Cell 170:605–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481–507

    Article  CAS  PubMed  Google Scholar 

  43. Gonzalez E, McGraw TE (2009) The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 8:2502–2508

    Article  CAS  PubMed  Google Scholar 

  44. Greer EL, Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24:7410–7425

    Article  CAS  PubMed  Google Scholar 

  45. Guo S, Rena G, Cichy S, He X, Cohen P et al (1999) Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem 274:17184–17192

    Article  CAS  PubMed  Google Scholar 

  46. Gupta D, Syed NA, Roesler WJ, Khandelwal RL (2004) Effect of overexpression and nuclear translocation of constitutively active PKB-alpha on cellular survival and proliferation in HepG2 cells. J Cell Biochem 93:513–525

    Article  CAS  PubMed  Google Scholar 

  47. Gutknecht M, Schaarschmidt ML, Danner M, Otten M, Augustin M (2018) How to weight patient-relevant treatment goals for assessing treatment benefit in psoriasis: preference elicitation methods vs. rating scales. Arch Dermatol Res 310(8):1–11

    Google Scholar 

  48. Hambly R, Kirby B (2017) The relevance of serum vitamin D in psoriasis: a review. Arch Dermatol Res 309:499–517

    Article  CAS  PubMed  Google Scholar 

  49. Hao JQ (2014) Targeting interleukin-22 in psoriasis. Inflammation 37:94–99

    Article  CAS  PubMed  Google Scholar 

  50. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4:988–1004

    Article  CAS  PubMed  Google Scholar 

  51. Hong KK, Gwak MJ, Song J, Kim NI (2016) Nuclear factor-kappaB pathway activation and phosphatase and tensin homolog downregulation in psoriasis. Br J Dermatol 174:433–435

    Article  PubMed  Google Scholar 

  52. Hresko RC, Murata H, Mueckler M (2003) Phosphoinositide-dependent kinase-2 is a distinct protein kinase enriched in a novel cytoskeletal fraction associated with adipocyte plasma membranes. J Biol Chem 278:21615–21622

    Article  CAS  PubMed  Google Scholar 

  53. Huang L, Xue R (2014) The expressions of p-Akt and p-FoxO1 in the lesions of psoriasis vulgaris (in Chinese). Chin J Leprosy Skin Dis 30:737–739

    Google Scholar 

  54. Huang T, Lin X, Meng X, Lin M (2014) Phosphoinositide-3 kinase/protein kinase-B/mammalian target of rapamycin pathway in psoriasis pathogenesis. A potential therapeutic target? Acta Derm Venereol 94:371–379

    Article  CAS  PubMed  Google Scholar 

  55. Imai-Sumida M, Chiyomaru T, Majid S, Saini S, Nip H et al (2017) Silibinin suppresses bladder cancer through down-regulation of actin cytoskeleton and PI3K/Akt signaling pathways. Oncotarget 8:92032–92042

    Article  PubMed  PubMed Central  Google Scholar 

  56. Irie HY, Pearline RV, Grueneberg D, Hsia M, Ravichandran P et al (2005) Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. J Cell Biol 171:1023–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jiang BH, Liu LZ (2009) PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res 102:19–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kaestner KH, Knochel W, Martinez DE (2000) Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 14:142–146

    CAS  PubMed  Google Scholar 

  59. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  CAS  PubMed  Google Scholar 

  60. Kops GJ, Burgering BM (2000) Forkhead transcription factors are targets of signalling by the proto-oncogene PKB (C-AKT). J Anat 197 Pt 4:571–574

    Article  Google Scholar 

  61. Kops GJ, Burgering BM (1999) Forkhead transcription factors: new insights into protein kinase B (c-akt) signaling. J Mol Med (Berl) 77:656–665

    Article  CAS  Google Scholar 

  62. Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL et al (1999) Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398:630–634

    Article  CAS  PubMed  Google Scholar 

  63. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li J, Yen C, Liaw D, Podsypanina K, Bose S et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    Article  CAS  PubMed  Google Scholar 

  65. Li Q, Huang H, He Z, Sun Y, Tang Y et al (2018) Regulatory effects of antitumor agent matrine on FOXO and PI3K-AKT pathway in castration-resistant prostate cancer cells. Sci China Life Sci 61:550–558

    Article  CAS  PubMed  Google Scholar 

  66. Li Y, Man X, You L, Xiang Q, Li H et al (2014) Downregulation of PTEN expression in psoriatic lesions. Int J Dermatol 53:855–860

    Article  CAS  PubMed  Google Scholar 

  67. Lin AM, Rubin CJ, Khandpur R, Wang JY, Riblett MB et al (2011) Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J Immunol 187:490–500

    Article  CAS  PubMed  Google Scholar 

  68. Liu Y, Luo W, Chen S (2011) Comparison of gene expression profiles reveals aberrant expression of FOXO1, Aurora A/B and EZH2 in lesional psoriatic skins. Mol Biol Rep 38:4219–4224

    Article  CAS  PubMed  Google Scholar 

  69. Lizcano JM, Alessi DR (2002) The insulin signalling pathway. Curr Biol 12:R236–R238

    Article  CAS  PubMed  Google Scholar 

  70. Lowes MA, Bowcock AM, Krueger JG (2007) Pathogenesis and therapy of psoriasis. Nature 445:866–873

    Article  CAS  PubMed  Google Scholar 

  71. Lowes MA, Russell CB, Martin DA, Towne JE, Krueger JG (2013) The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol 34:174–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ma J, Matkar S, He X, Hua X (2018) FOXO family in regulating cancer and metabolism. Semin Cancer Biol 50:32–41

    Article  CAS  PubMed  Google Scholar 

  73. Madonna S, Scarponi C, Pallotta S, Cavani A, Albanesi C (2012) Anti-apoptotic effects of suppressor of cytokine signaling 3 and 1 in psoriasis. Cell Death Dis 3:e334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Maehama T (2007) PTEN: its deregulation and tumorigenesis. Biol Pharm Bull 30:1624–1627

    Article  CAS  PubMed  Google Scholar 

  75. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378

    Article  CAS  PubMed  Google Scholar 

  76. Malemud CJ (2009) The discovery of novel experimental therapies for inflammatory arthritis. Mediat Inflamm 2009: 698769

  77. Malemud CJ (2015) The PI3K/Akt/PTEN/mTOR pathway: a fruitful target for inducing cell death in rheumatoid arthritis? Fut Med Chem 7:1137–1147

    Article  CAS  Google Scholar 

  78. Man X, Zhang X, Li H (2011) The Expression of Akt1,Akt2,Akt3 in the lesions of Psoriasis vulgaris the Chinese (in Chinese). J Dermatovenereol 25:338–340

    CAS  Google Scholar 

  79. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Manning BD, Toker A (2017) AKT/PKB Signaling: navigating the network. Cell 169:381–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Markman B, Dienstmann R, Tabernero J (2010) Targeting the PI3K/Akt/mTOR pathway–beyond rapalogs. Oncotarget 1:530–543

    Article  PubMed  PubMed Central  Google Scholar 

  82. Melnik BC (2013) Western diet-mediated mTORC1-signaling in Acne, psoriasis, atopic dermatitis, and related diseases of civilization: therapeutic role of plant-derived natural mTORC1 inhibitors. In: Watson R, Zibadi S (eds) Bioactive dietary factors and plant extracts in dermatology nutrition and health. Humana Press, Totowa, pp 397–419

    Chapter  Google Scholar 

  83. Mitra A, Raychaudhuri SK, Raychaudhuri SP (2012) Functional role of IL-22 in psoriatic arthritis. Arthritis Res Ther 14:R65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mitra A, Raychaudhuri SK, Raychaudhuri SP (2012) IL-22 induced cell proliferation is regulated by PI3K/Akt/mTOR signaling cascade. Cytokine 60:38–42

    Article  CAS  PubMed  Google Scholar 

  85. Moeinifard M, Hassan ZM, Fallahian F, Hamzeloo-Moghadam M, Taghikhani M (2017) Britannin induces apoptosis through AKT-FOXO1 pathway in human pancreatic cancer cells. Biomed Pharmacother 94:1101–1110

    Article  CAS  PubMed  Google Scholar 

  86. Monfrecola G, Lembo S, Caiazzo G, De Vita V, Di Caprio R et al (2016) Mechanistic target of rapamycin (mTOR) expression is increased in acne patients’ skin. Exp Dermatol 25:153–155

    Article  PubMed  Google Scholar 

  87. Murayama K, Kimura T, Tarutani M, Tomooka M, Hayashi R et al (2007) Akt activation induces epidermal hyperplasia and proliferation of epidermal progenitors. Oncogene 26:4882–4888

    Article  CAS  PubMed  Google Scholar 

  88. Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G et al (2001) Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 98:10314–10319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nestle FO, Kaplan DH, Barker J (2009) Psoriasis. N Engl J Med 361:496–509

    Article  CAS  PubMed  Google Scholar 

  90. Nograles KE, Davidovici B, Krueger JG (2010) New insights in the immunologic basis of psoriasis. Semin Cutan Med Surg 29:3–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. O’Shaughnessy RF, Welti JC, Cooke JC, Avilion AA, Monks B et al (2007) AKT-dependent HspB1 (Hsp27) activity in epidermal differentiation. J Biol Chem 282:17297–17305

    Article  PubMed  Google Scholar 

  92. Ochaion A, Bar-Yehuda S, Cohen S, Barer F, Patoka R et al (2009) The anti-inflammatory target A(3) adenosine receptor is over-expressed in rheumatoid arthritis, psoriasis and Crohn’s disease. Cell Immunol 258:115–122

    Article  CAS  PubMed  Google Scholar 

  93. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L et al (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389:994–999

    Article  CAS  PubMed  Google Scholar 

  94. Pankow S, Bamberger C, Klippel A, Werner S (2006) Regulation of epidermal homeostasis and repair by phosphoinositide 3-kinase. J Cell Sci 119:4033–4046

    Article  CAS  PubMed  Google Scholar 

  95. Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12:2488–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Peng XD, Xu PZ, Chen ML, Hahn-Windgassen A, Skeen J et al (2003) Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 17:1352–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pike MC, Lee CS, Elder JT, Voorhees JJ, Fisher GJ (1989) Increased phosphatidylinositol kinase activity in psoriatic epidermis. J Invest Dermatol 92:791–797

    Article  CAS  PubMed  Google Scholar 

  98. Raychaudhuri SK, Raychaudhuri SP (2014) mTOR signaling cascade in psoriatic disease: double kinase mTOR inhibitor a novel therapeutic target. Indian J Dermatol 59:67–70

    Article  PubMed  PubMed Central  Google Scholar 

  99. Raychaudhuri SP, Raychaudhuri SK, Atkuri KR, Herzenberg LA, Herzenberg LA (2011) Nerve growth factor: a key local regulator in the pathogenesis of inflammatory arthritis. Arthritis Rheum 63:3243–3252

    Article  CAS  PubMed  Google Scholar 

  100. Sa SM, Valdez PA, Wu J, Jung K, Zhong F et al (2007) The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J Immunol 178:2229–2240

    Article  CAS  PubMed  Google Scholar 

  101. Saoncella S, Tassone B, Deklic E, Avolio F, Jon C et al (2014) Nuclear Akt2 opposes limbal keratinocyte stem cell self-renewal by repressing a FOXO-mTORC1 signaling pathway. Stem Cells 32:754–769

    Article  CAS  PubMed  Google Scholar 

  102. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    Article  CAS  PubMed  Google Scholar 

  103. Saxena A, Raychaudhuri SK, Raychaudhuri SP (2011) Interleukin-17-induced proliferation of fibroblast-like synovial cells is mTOR dependent. Arthritis Rheum 63:1465–1466

    Article  CAS  PubMed  Google Scholar 

  104. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 169:361–371

    Article  CAS  PubMed  Google Scholar 

  105. Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC Jr (1998) Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci USA 95:7772–7777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shankar S, Chen Q, Srivastava RK (2008) Inhibition of PI3K/AKT and MEK/ERK pathways act synergistically to enhance antiangiogenic effects of EGCG through activation of FOXO transcription factor. J Mol Signal 3:1–11

    Article  CAS  Google Scholar 

  107. Shi Q, Bao S, Maxwell JA, Reese ED, Friedman HS et al (2004) Secreted protein acidic, rich in cysteine (SPARC), mediates cellular survival of gliomas through AKT activation. J Biol Chem 279:52200–52209

    Article  CAS  PubMed  Google Scholar 

  108. Shirsath N, Mayer G, Singh TP, Wolf P (2015) 8-methoxypsoralen plus UVA (PUVA) therapy normalizes signalling of phosphorylated component of mTOR pathway in psoriatic skin of K5.hTGFbeta1 transgenic mice. Exp Dermatol 24:889–891

    Article  PubMed  Google Scholar 

  109. Soares HP, Ming M, Mellon M, Young SH, Han L et al (2015) Dual PI3K/mTOR inhibitors induce rapid overactivation of the MEK/ERK Pathway in human pancreatic cancer cells through suppression of mTORC2. Mol Cancer Ther 14:1014–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H et al (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15:356–362

    Article  CAS  PubMed  Google Scholar 

  112. Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB et al (1997) Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277:567–570

    Article  CAS  PubMed  Google Scholar 

  113. Tzivion G, Dobson M, Ramakrishnan G (2011) FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta 1813:1938–1945

    Article  CAS  PubMed  Google Scholar 

  114. van der Vos KE, Coffer PJ (2008) FOXO-binding partners: it takes two to tango. Oncogene 27:2289–2299

    Article  CAS  PubMed  Google Scholar 

  115. van der Vos KE, Eliasson P, Proikas-Cezanne T, Vervoort SJ, van Boxtel R et al (2012) Modulation of glutamine metabolism by the PI(3)K-PKB-FOXO network regulates autophagy. Nat Cell Biol 14:829–837

    Article  CAS  PubMed  Google Scholar 

  116. Wang H, Ran LW, Hui K, Wang XY, Zheng Y (2017) Expressions of survivin, PI3K and AKT in keratinocytes in skin lesions and their pathogenic role in psoriasis vulgaris. Nan Fang Yi Ke Da Xue Xue Bao 37:1512–1516

    CAS  PubMed  Google Scholar 

  117. Wang Z, Yu T, Huang P (2016) Post-translational modifications of FOXO family proteins (review). Mol Med Rep 14:4931–4941

    Article  CAS  PubMed  Google Scholar 

  118. Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S et al (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428:332–337

    Article  CAS  PubMed  Google Scholar 

  119. Yao R, Cooper GM (1995) Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267:2003–2006

    Article  CAS  PubMed  Google Scholar 

  120. Yuan TL, Wulf G, Burga L, Cantley LC (2011) Cell-to-cell variability in PI3K protein level regulates PI3K-AKT pathway activity in cell populations. Curr Biol 21:173–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang X, Liu H, Ma S (1999) Up-regulation of phosphatidylinositol 3-kinase in psoriatic lesions. Chin Med J (Engl) 112:1097–1100

    CAS  Google Scholar 

  122. Zhang X, Tang N, Hadden TJ, Rishi AK (2011) Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 1813:1978–1986

    Article  CAS  PubMed  Google Scholar 

  123. Zhang X, Zhou P, You L (2009) Increased activities of Akt in psoriatic epidermis (in Chinese). Chin J Dermatol 42:413–416

    CAS  Google Scholar 

  124. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12:21–35

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant from the National Natural Science Foundation of China (Grant numbers: 81573048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any studies with human participants or animals performed by any of the authors; therefore, informed consent is not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, X. The role of PI3K/AKT/FOXO signaling in psoriasis. Arch Dermatol Res 311, 83–91 (2019). https://doi.org/10.1007/s00403-018-1879-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-018-1879-8

Keywords

Navigation