Skip to main content

Advertisement

Log in

Analysis of the IL-31 pathway in Mycosis fungoides and Sézary syndrome

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

IL-31, predominantly produced by CD45RO + CLA + Th2 cells, plays an important pathogenetic role in pruritic skin diseases like atopic dermatitis. As tumor cells in Sézary syndrome (SS) and Mycosis fungoides (MF) possess similar immunophenotypes and the conditions mentioned are often associated with pruritus, the analysis of the IL-31 pathway in MF/SS patients is of interest. Serum samples from the peripheral blood of 23 patients and 17 controls were analyzed for IL-31 abundance and correlated with disease stage and pruritus. Furthermore IL-31-, IL-31 receptor alpha (IL-31Rα)- and Oncostatin M receptor beta (OSMRβ)-mRNA expression was measured in blood tumor cells from SS patients, memory T-cells from controls and lymphoma cell lines. Serum IL-31 levels were low but differed between groups with no or strong pruritus. Expression of IL-31 was detectable at low levels in cell lines, but not in the tumor cells of SS patients. Stimulation with PMA/ionomycin led to indiscriminate expression in peripheral blood tumor cells and control T-cells. IL-2-stimulation resulted in expression only in 9/11 patient samples. IL-31Rα-expression was detectable in 10/10 cell lines, 8/15 peripheral blood samples from SS patients, and 4/10 controls; whereas, OSMRβ mRNA was detectable in 4/10 cell lines, but only one patient and control sample. The results of our analyses regarding serum levels and receptor expression do not suggest a central role of IL-31 in MF/SS pathogenesis. However, the results of IL-2 stimulation as well as the increased IL-31 levels in patients with strong pruritus offer a rationale for therapeutic approach in this subset of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abraham RM, Zhang Q, Odum N, Wasik MA (2011) The role of cytokine signaling in the pathogenesis of cutaneous T-cell lymphoma. Cancer Biol Ther 12:1019–1022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Agar NS, Wedgeworth E, Crichton S, Mitchell TJ, Cox M, Ferreira S et al (2010) Survival outcomes and prognostic factors in mycosis fungoides/Sézary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J Clin Oncol 28:4730–4739

    Article  PubMed  Google Scholar 

  3. Al-Yacoub N, Fecker LF, Möbs M, Plötz M, Braun FK, Sterry W et al (2012) Apoptosis induction by SAHA in cutaneous T-cell lymphoma cells is related to downregulation of c-FLIP and enhanced TRAIL signaling. J Invest Dermatol 132:2263–2274

    Article  CAS  PubMed  Google Scholar 

  4. Bilsborough J, Leung DY, Maurer M, Howell M, Boguniewicz M, Yao L et al (2006) IL-31 is associated with cutaneous lymphocyte antigen-positive skin homing T cells in patients with atopic dermatitis. J Allergy Clin Immunol 117:418–425

    Article  CAS  PubMed  Google Scholar 

  5. Chang TP, Vancurova I (2013) NFκB function and regulation in cutaneous T-cell lymphoma. Am J Cancer Res 3:433–445

    PubMed Central  PubMed  Google Scholar 

  6. Demierre MF, Gan S, Jones J, Miller DR (2006) Significant impact of cutaneous T-cell lymphoma on patients’ quality of life: results of a 2005 National Cutaneous Lymphoma Foundation Survey. Cancer 107:2504–2511

    Article  PubMed  Google Scholar 

  7. Dillon SR, Sprecher C, Hammond A, Bilsborough J, Rosenfeld-Franklin M, Presnell SR et al (2004) Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 5:752–760

    Article  CAS  PubMed  Google Scholar 

  8. Diveu C, Lelièvre E, Perret D, Lak-Hal AH, Froger J, Guillet C et al (2003) GPL, a novel cytokine receptor related to GP130 and leukemia inhibitory factor receptor. J Biol Chem 278:49850–49859

    Article  CAS  PubMed  Google Scholar 

  9. Dreuw A, Radtke S, Pflanz S, Lippok BE, Heinrich PC, Hermanns HM (2004) Characterization of the signaling capacities of the novel gp130-like cytokine receptor. J Biol Chem 279:36112–36120

    Article  CAS  PubMed  Google Scholar 

  10. Hawro T, Saluja R, Weller K, Altrichter S, Metz M, Maurer M (2014) Interleukin-31 does not induce immediate itch in atopic dermatitis patients and healthy controls after skin challenge. Allergy 69:113–117

    Article  CAS  PubMed  Google Scholar 

  11. Hwang ST, Janik JE, Jaffe ES, Wilson WH (2008) Mycosis fungoides and Sézary syndrome. Lancet 371:945–957

    Article  CAS  PubMed  Google Scholar 

  12. Imam MH, Shenoy PJ, Flowers CR, Phillips A, Lechowicz MJ (2013) Incidence and survival patterns of cutaneous T-cell lymphomas in the United States. Leuk Lymphoma 54:752–759

    Article  PubMed  Google Scholar 

  13. Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789

    Article  CAS  PubMed  Google Scholar 

  14. Laharanne E, Oumouhou N, Bonnet F, Carlotti M, Gentil C, Chevret E et al (2010) Genome-wide analysis of cutaneous T-cell lymphomas identifies three clinically relevant classes. J Invest Dermatol 130:1707–1718

    Article  CAS  PubMed  Google Scholar 

  15. Larsen CS (1990) Activation of human T lymphocytes by phorbol-12,13-dibutyrate and ionomycin. Scand J Immunol 31:353–360

    Article  CAS  PubMed  Google Scholar 

  16. Mao X, Orchard G, Mitchell TJ, Oyama N, Russell-Jones R, Vermeer MH et al (2008) A genomic and expression study of AP-1 in primary cutaneous T-cell lymphoma: evidence for dysregulated expression of JUNB and JUND in MF and SS. J Cutan Pathol 35:899–910

    Article  PubMed  Google Scholar 

  17. Marti RM, Wasik MA, Kadin ME (1996) Constitutive secretion of GM-CSF by three different cell lines derived from a single patient with a progressive cutaneous lymphoproliferative disorder. Cytokine 8:323–329

    Article  CAS  PubMed  Google Scholar 

  18. Miyagaki T, Sugaya M, Suga H, Ohmatsu H, Fujita H, Asano Y et al (2013) Increased CCL18 expression in patients with cutaneous T-cell lymphoma: association with disease severity and prognosis. J Eur Acad Dermatol Venereol 27:e60–e67

    Article  CAS  PubMed  Google Scholar 

  19. Nobbe S, Dziunycz P, Mühleisen B, Bilsborough J, Dillon SR, French LE, Hofbauer GF (2012) IL-31 expression by inflammatory cells is preferentially elevated in atopic dermatitis. Acta Derm Venereol 92:24–28

    Article  CAS  PubMed  Google Scholar 

  20. Ohmatsu H, Sugaya M, Suga H, Morimura S, Miyagaki T, Kai H et al (2012) Serum IL-31 levels are increased in patients with cutaneous T-cell lymphoma. Acta Derm Venereol 92:282–283

    Article  CAS  PubMed  Google Scholar 

  21. Papadavid E, Economidou J, Psarra A, Kapsimali V, Mantzana V, Antoniou C et al (2003) The relevance of peripheral blood T-helper 1 and 2 cytokine pattern in the evaluation of patients with mycosis fungoides and Sézary syndrome. Br J Dermatol 148:709–718

    Article  CAS  PubMed  Google Scholar 

  22. Perrigoue JG, Li J, Zaph C, Goldschmidt M, Scott P, de Sauvage FJ (2007) IL-31-IL-31R interactions negatively regulate type 2 inflammation in the lung. J Exp Med 204:481–487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Ralfkiaer E (1991) Immunohistological markers for the diagnosis of cutaneous lymphomas. Semin Diagnost Pathol 8:62–72

    CAS  Google Scholar 

  24. Siakantari M (2010) Classification and molecular pathogenesis of CTCL. Melanoma Res 20:20–21

    Article  Google Scholar 

  25. Singer EM, Shin DB, Nattkemper LA, Benoit BM, Klein RS, Didigu CA et al (2013) IL-31 is produced by the malignant T-cell population in cutaneous T-Cell lymphoma and correlates with CTCL pruritus. J Invest Dermatol 133:2783–2785

    Article  CAS  PubMed  Google Scholar 

  26. Siniewicz-Luzeńczyk K, Stańczyk-Przyłuska A, Zeman K (2013) Correlation between serum interleukin-31 level and the severity of disease in children with atopic dermatitis. Postepy Dermatol Alergol 30:282–285

    Article  PubMed Central  PubMed  Google Scholar 

  27. Steininger A, Möbs M, Ullmann R, Köchert K, Kreher S, Lamprecht B et al (2011) Genomic loss of the putative tumor suppressor gene E2A in human lymphoma. J Exp Med 208:1585–1593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Szegedi K, Kremer AE, Kezic S, Teunissen MB, Bos JD, Luiten RM et al (2012) Increased frequencies of IL-31-producing T cells are found in chronic atopic dermatitis skin. Exp Dermatol 21:431–436

    Article  CAS  PubMed  Google Scholar 

  29. Vij A, Duvic M (2012) Prevalence and severity of pruritus in cutaneous T cell lymphoma. Int J Dermatol 51:930–934

    Article  PubMed  Google Scholar 

  30. Vowels BR, Lessin SR, Cassin M, Jaworsky C, Benoit B, Wolfe JT, Rook AH (1994) Th2 cytokine mRNA expression in skin in cutaneous T-cell lymphoma. J Invest Dermatol 103:669–673

    Article  CAS  PubMed  Google Scholar 

  31. Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH et al (2005) WHO-EORTC classification for cutaneous lymphomas. Blood 105:3768–3785

    Article  CAS  PubMed  Google Scholar 

  32. Willemze R, Kerl H, Sterry W, Berti E, Cerroni L, Chimenti S et al (1997) EORTC classification for primary cutaneous lymphomas: a proposal from the Cutaneous Lymphoma Study Group of the European Organization for Research and Treatment of Cancer. Blood 90:354–371

    CAS  PubMed  Google Scholar 

  33. Zhang C, Li B, Gaikwad AS, Haridas V, Xu Z, Gutterman JU, Duvic M (2008) Avicin D selectively induces apoptosis and downregulates p-STAT-3, bcl-2, and survivin in cutaneous T-cell lymphoma cells. J Invest Dermatol 128:2728–2735

    Article  CAS  PubMed  Google Scholar 

  34. Zhang C, Li B, Zhang X, Hazarika P, Aggarwal BB, Duvic M (2010) Curcumin selectively induces apoptosis in cutaneous T-cell lymphoma cell lines and patients’ PBMCs: potential role for STAT-3 and NF-kappaB signaling. J Invest Dermatol 130:2110–2119

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Q, Putheti P, Zhou Q, Liu Q, Gao W (2008) Structures and biological functions of IL-31 and IL-31 receptors. Cytokine Growth Factor Rev 19:347–356

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

All authors certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Staffan Vandersee.

Additional information

M. Möbs and S. Gryzik contributed equally as primary investigators.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Möbs, M., Gryzik, S., Haidar, A. et al. Analysis of the IL-31 pathway in Mycosis fungoides and Sézary syndrome. Arch Dermatol Res 307, 479–485 (2015). https://doi.org/10.1007/s00403-014-1527-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-014-1527-x

Keywords

Navigation