Skip to main content

Advertisement

Log in

Galvanic zinc–copper microparticles inhibit melanogenesis via multiple pigmentary pathways

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

The endogenous electrical field of human skin plays an important role in many skin functions. However, the biological effects and mechanism of action of externally applied electrical stimulation on skin remain unclear. Recent study showed that galvanic zinc–copper microparticles produce electrical stimulation and reduce inflammatory and immune responses in intact skin, suggesting the important role of electrical stimulation in non-wounded skin. The objective of this study is to investigate the biological effect of galvanic zinc–copper microparticles on skin pigmentation. Our findings showed that galvanic zinc–copper microparticles inhibited melanogenesis in a human melanoma cell line (MNT-1), human keratinocytes and melanoma cells co-cultures, and in pigmented epidermal equivalents. Treatment of galvanic zinc–copper microparticles inhibited melanogenesis by reducing the promoter transactivation of tyrosinase and tyrosinase-related protein-1 in human melanoma cells. In a co-culture Transwell system of keratinocytes and melanoma cells, galvanic zinc–copper microparticles reduced melanin production via downregulation of endothelin-1 secretion from keratinocytes and reduced tyrosinase gene expression in melanoma cells. In addition, exposure of pigmented epidermal equivalents to galvanic zinc–copper microparticles resulted in reduced melanin deposition. In conclusion, our data demonstrated for the first time that galvanic zinc–copper microparticles reduced melanogenesis in melanoma cells and melanin deposition in pigmented epidermal equivalents by affecting multiple pigmentary pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdel-Malek Z, Scott MC, Suzuki I, Tada A, Im S, Lamoreux L, Ito S, Barsh G, Hearing VJ (2000) The melanocortin-1 receptor is a key regulator of human cutaneous pigmentation. Pigment Cell Res 13:156–162

    Article  PubMed  Google Scholar 

  2. Abdel-Malek ZA, Swope VB, Amornsiripanitch N, Nordlund JJ (1987) In vitro modulation of proliferation and melanization of S91 melanoma cells by prostaglandins. Cancer Res 47:3141–3146

    CAS  PubMed  Google Scholar 

  3. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  CAS  PubMed  Google Scholar 

  4. Chakraborty AK, Funasaka Y, Slominski A, Ermak G, Hwang J, Pawelek JM, Ichihashi M (1996) Production and release of proopiomelanocortin (POMC) derived peptides by human melanocytes and keratinocytes in culture: regulation by ultraviolet B. Biochim Biophys Acta 1313:130–138

    Article  PubMed  Google Scholar 

  5. Chantalat J, Bruning E, Sun Y, Liu J (2012) Application of a topical biomimetic electrical signaling technology to photo-aging: a randomized, double-blind, placebo-controlled trial of a galvanic zinc–copper complex. J Drugs Dermatol 11:30–37

    CAS  PubMed  Google Scholar 

  6. El-Husseini T, El-Kawy S, Shalaby H, El-Sebai M (2007) Microcurrent skin patches for postoperative pain control in total knee arthroplasty: a pilot study. Int Orthop 31:229–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Funasaka Y, Chakraborty AK, Hayashi Y, Komoto M, Ohashi A, Nagahama M, Inoue Y, Pawelek J, Ichihashi M (1998) Modulation of melanocyte-stimulating hormone receptor expression on normal human melanocytes: evidence for a regulatory role of ultraviolet B, interleukin-1alpha, interleukin-1beta, endothelin-1 and tumor necrosis factor-alpha. Br J Dermatol 139:216–224

    Article  CAS  PubMed  Google Scholar 

  8. Grahn JC, Reilly DA, Nuccitelli RL, Isseroff RR (2003) Melanocytes do not migrate directionally in physiological DC electric fields. Wound Repair Regen 11:64–70

    Article  PubMed  Google Scholar 

  9. Hearing VJ, Tsukamoto K (1991) Enzymatic control of pigmentation in mammals. FASEB J 5:2902–2909

    CAS  PubMed  Google Scholar 

  10. Hearing VJ (2011) Determination of melanin synthetic pathways. J Invest Dermatol 131:E8–E11

    Article  PubMed  Google Scholar 

  11. Imokawa G (2004) Autocrine and paracrine regulation of melanocytes in human skin and in pigmentary disorders. Pigment Cell Res 17:96–110

    Article  CAS  PubMed  Google Scholar 

  12. Jiménez-Cervantes C, Solano F, Kobayashi T, Urabe K, Hearing VJ, Lozano JA, García-Borrón JC (1994) A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1). J Biol Chem 269:17993–18000

    PubMed  Google Scholar 

  13. Kameyama K, Tanaka S, Ishida Y, Hearing VJ (1989) Interferons modulate the expression of hormone receptors on the surface of murine melanoma cells. J Clin Invest 83:213–221

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Kaur S, Lyte P, Garay M, Liebel F, Sun Y, Liu JC, Southall MD (2011) Galvanic zinc–copper microparticles produce electrical stimulation that reduces the inflammatory and immune responses in skin. Arch Dermatol Res 303:551–562

    Article  CAS  PubMed  Google Scholar 

  15. Kobayashi T, Urabe K, Winder A, Jiménez-Cervantes C, Imokawa G, Brewington T, Solano F, García-Borrón JC, Hearing VJ (1994) Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J 13:5818–5825

    CAS  PubMed  Google Scholar 

  16. Kobayashi T, Imokawa G, Bennett DC, Hearing VJ (1998) Tyrosinase stabilization by Tyrp1 (the brown locus protein). J Biol Chem 273:31801–31805

    Article  CAS  PubMed  Google Scholar 

  17. Kobayashi T, Hearing VJ (2007) Direct interaction of tyrosinase with Tyrp1 to form heterodimeric complexes in vivo. J Cell Sci 120:4261–4268

    Article  CAS  PubMed  Google Scholar 

  18. Kondo T, Hearing VJ (2011) Update on the regulation of mammalian melanocytes function and skin pigmentation. Expert Rev Dermatol 6:97–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Körner A, Pawelek J (1982) Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin. Science 217:1163–1165

    Article  PubMed  Google Scholar 

  20. Kushimoto T, Basrur V, Valencia J, Matsunaga J, Vieira WD, Ferrans VJ, Muller J, Appella E, Hearing VJ (2001) A model for melanosome biogenesis based on the purification and analysis of early melanosomes. Proc Natl Acad Sci USA 98:10698–10703

    Article  CAS  PubMed  Google Scholar 

  21. Lin CB, Babiarz L, Liebel F, Roydon Price E, Kizoulis M, Gendimenico GJ, Fisher DE, Seiberg M (2002) Modulation of microphthalmia-associated transcription factor gene expression alters skin pigmentation. J Invest Dermatol 119:1330–1340

    Article  CAS  PubMed  Google Scholar 

  22. Manga P, Sato K, Ye L, Beermann F, Lamoreux ML, Orlow SJ (2000) Mutational analysis of the modulation of tyrosinase by tyrosinase-related proteins 1 and 2 in vitro. Pigment Cell Res 13:364–374

    Article  CAS  PubMed  Google Scholar 

  23. Mycielska ME, Djamgoz MB (2004) Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. J Cell Sci 117:1631–1639

    Article  CAS  PubMed  Google Scholar 

  24. Nishimura KY, Isseroff RR, Nuccitelli R (1996) Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J Cell Sci 109:199–207

    CAS  PubMed  Google Scholar 

  25. Nordlund JJ, Abdel-Malek ZA (1988) Mechanisms for post-inflammatory hyperpigmentation and hypopigmentation. Prog Clin Biol Res 256:219–236

    CAS  PubMed  Google Scholar 

  26. Poitras S, Brosseau L (2008) Evidence-informed management of chronic low back pain with transcutaneous electrical nerve stimulation, interferential current, electrical muscle stimulation, ultrasound, and thermotherapy. Spine J 8:226–233

    Article  PubMed  Google Scholar 

  27. Seiberg M, Paine C, Sharlow E, Andrade-Gordon P, Costanzo M, Eisinger M, Shapiro SS (2000) The protease-activated receptor 2 regulates pigmentation via keratinocyte–melanocyte interactions. Exp Cell Res 254:25–32

    Article  CAS  PubMed  Google Scholar 

  28. Sharlow ER, Paine CS, Babiarz L, Eisinger M, Shapiro S, Seiberg M (2000) The protease-activated receptor-2 upregulates keratinocyte phagocytosis. J Cell Sci 113:3093–3101

    CAS  PubMed  Google Scholar 

  29. Sheehan DC, Hrapchak BB (1980) Pigments and minerals. In: Theory and practice of histotechnology. CV Mosby, St. Louis, pp 223–277

  30. Slominski A, Paus R, Schanderdorf D (1993) Melanocytes as sensory and regulatory cells in the epidermis. J Theor Biol 164:103–120

    Article  CAS  PubMed  Google Scholar 

  31. Slominski A, Paus R (1993) Melanogenesis is coupled to murine anagen: toward new concepts for the role of melanocytes and the regulation of melanogenesis in hair growth. J Invest Dermatol 101:90S–97S

    Article  CAS  PubMed  Google Scholar 

  32. Slominski A, Ermak G, Hwang J, Chakraborty A, Mazurkiewicz JE, Mihm M (1995) Proopiomelanocortin corticotropin releasing hormone and corticotropin releasing hormone receptor genes are expressed in human skin. FEBS Lett 374:113–116

    Article  CAS  PubMed  Google Scholar 

  33. Slominski A, Wortsman J, Luger T, Paus R, Solomon S (2000) Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev 80:979–1020

    CAS  PubMed  Google Scholar 

  34. Slominski A, Tobin DJ, Shibahara S, Wortsman J (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84:1155–1228

    Article  CAS  PubMed  Google Scholar 

  35. Slominski A (2009) Neuroendocrine activity of the melanocyte. Exp Dermatol 18:760–763

    Article  PubMed Central  PubMed  Google Scholar 

  36. Slominski A, Zmijewski MA, Pawelek J (2012) l-tyrosine and l-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res 25:14–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Slominski A, Zmijewski MA, Skobowiat C, Zbytek B, Slominski RM, Steketee JD (2012) Sensing the environment: regulation of local and global homeostasis by the skin neuroendocrine system. Adv Anat Embryol Cell Biol. 212:v, vii, 1–115

  38. Song B, Zhao M, Forrester J, McCaig C (2004) Nerve regeneration and wound healing are stimulated and directed by an endogenous electrical field in vivo. J Cell Sci 117:4681–4690

    Article  CAS  PubMed  Google Scholar 

  39. Sun Y, Liu JC (2010) Bioelectricity. In: Baran R, Maibach HI (eds) Textbook of cosmetic dermatology, 4th edn. Informa Healthcare, London, pp 466–481

    Chapter  Google Scholar 

  40. Swope VB, Sauder DN, McKenzie RC, Sramkoski RM, Krug KA, Babcock GF, Nordlund JJ, Abdel-Malek ZA (1994) Synthesis of interleukin-1 alpha and beta by normal human melanocytes. J Invest Dermatol 102:749–753

    Article  CAS  PubMed  Google Scholar 

  41. Tada A, Suzuki I, Im S, Davis MB, Cornelius J, Babcock G, Nordlund JJ, Abdel-Malek ZA (1998) Endothelin-1 is a paracrine growth factor that modulates melanogenesis of human melanocytes and participates in their responses to ultraviolet radiation. Cell Growth Differ 9:575–584

    CAS  PubMed  Google Scholar 

  42. Thong HY, Jee SH, Sun CC, Boissy RE (2003) The patterns of melanosome distribution in keratinocytes of human skin as one determining factor of skin color. Br J Dermatol 149:498–505

    Article  PubMed  Google Scholar 

  43. Todd I, Clothier RH, Huggins ML, Patel N, Searle KC, Jeyarajah S, Pradel L, Lacey KL (2001) Electrical stimulation of transforming growth factor-beta 1 secretion by human dermal fibroblasts and the U937 human monocytic cell line. Altern Lab Anim 29:693–701

    CAS  PubMed  Google Scholar 

  44. Weintraub MI, Herrmann DN, Smith AG, Backonja MM, Cole SP (2009) Pulsed electromagnetic fields to reduce diabetic neuropathic pain and stimulate neuronal repair: a randomized controlled trial. Arch Phys Med Rehabil 90:1102–1109

    Article  PubMed  Google Scholar 

  45. Zhao H, Eling DJ, Medrano EE, Boissy RE (1996) Retroviral infection with human tyrosinase-related protein-1 (TRP-1) cDNA upregulates tyrosinase activity and melanin synthesis in a TRP-1-deficient melanoma cell line. J Invest Dermatol 106:744–752

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We would like to thank Elizabeth Bruning and Ying Sun from Johnson & Johnson Consumer Companies Inc. for helpful discussions on clinical results of galvanic zinc–copper microparticles.

Conflict of interest

This research was supported and funded by Johnson & Johnson Consumer Companies Inc. All authors were employed by Johnson & Johnson at the time these studies were conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong-Jin Loy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Won, YK., Lin, C.B., Seiberg, M. et al. Galvanic zinc–copper microparticles inhibit melanogenesis via multiple pigmentary pathways. Arch Dermatol Res 306, 27–35 (2014). https://doi.org/10.1007/s00403-013-1369-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-013-1369-y

Keywords

Navigation