Skip to main content

Advertisement

Log in

Sirtuins in dermatology: applications for future research and therapeutics

  • Mini Review
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Sirtuins are a family of seven proteins in humans (SIRT1–SIRT7) that are involved in multiple cellular processes relevant to dermatology. The role of sirtuins in other organ systems is established. However, the importance of these proteins in dermatology is less defined. Recently, sirtuins gained international attention because of their role as “longevity proteins” that may extend and enhance human life. Sirtuins function in the cell via histone deacetylase and/or adenosine diphosphate ribosyltransferase enzymatic activity that target histone and non-histone substrates, including transcription regulators, tumor suppressors, structural proteins, DNA repair proteins, cell signaling proteins, transport proteins, and enzymes. Sirtuins are involved in cellular pathways related to skin structure and function, including aging, ultraviolet-induced photoaging, inflammation, epigenetics, cancer, and a variety of cellular functions including cell cycle, DNA repair and proliferation. This review highlights sirtuin-related cellular pathways, therapeutics and pharmacological targets in atopic dermatitis, bullous dermatoses, collagen vascular disorders, psoriasis, systemic lupus erythematosus, hypertrophic and keloid scars, cutaneous infections, and non-melanoma and melanoma skin cancer. Also discussed is the role of sirtuins in the following genodermatoses: ataxia telangiectasia, Cowden’s syndrome, dyskeratosis congenita, Rubenstein–Taybi, Werner syndrome, and xeroderma pigmentosum. The pathophysiology of these inherited diseases is not well understood, and sirtuin-related processes represent potential therapeutic targets for diseases lacking suitable alternative treatments. The goal of this review is to bring attention to the dermatology community, physicians, and scientists, the importance of sirtuins in dermatology and provide a foundation and impetus for future discussion, research and pharmacologic discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADPRT:

ADP-ribosyl transferase

BCC:

Basal cell carcinoma

CREB:

cAMP response binding protein

CS:

Cowden syndrome

DC:

Dyskeratosis congenita

DNA:

Deoxyribonucleic acid

Dnmt:

DNA methyltransferase

HAT:

Histone acetyl transferase

HDAC:

Histone deacetylase

HDACi:

Histone deacetylase inhibitor

HPV:

Human papilloma virus

H2O2 :

Hydrogen peroxide

mTOR:

Mammalian target of rapamycin

NAD+ :

Nicotinamide adenine dinucleotide

NAM:

Nicotinamide

NER:

Nucleotide excision repair

NF-κB:

Nuclear factor-kappa B

PTEN:

Phosphatase and tensin homolog

Rb:

Retinoblastoma

RTS:

Rubenstein–Taybi syndrome

SCC:

Squamous cell carcinoma

siRNA:

Small interfering ribonucleic acid

SLE:

Systemic lupus erythematosus

SIRT:

Silent information regulator homolog (sirtuin)

TNFα:

Tumor necrosis factor alpha

UV:

Ultraviolet (radiation)

WS:

Werner syndrome

XP:

Xeroderma pigmentosum

References

  1. Abel T, Zukin R (2008) Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 8:57–64

    Article  PubMed  CAS  Google Scholar 

  2. Alcain F, Villalba J (2009) Sirtuin activators. Expert Opin Ther Pat 19:403–414

    Article  PubMed  CAS  Google Scholar 

  3. Alcain F, Villalba J (2009) Sirtuin inhibitors. Expert Opin Ther Pat 19:283–294

    Article  PubMed  CAS  Google Scholar 

  4. Allison S, Jiang M, Milner J (2009) Oncogenic viral protein HPV E7 up-regulates the SIRT1 longevity protein in human cervical cancer cells. Aging 1:316–327

    PubMed  CAS  Google Scholar 

  5. Back J, Rezvani H, Zhu Y, Guyonnet-Duperat V, Athar M et al (2011) Cancer cell survival following DNA damage-mediated premature senescence is regulated by mammalian target of rapamycin (mTOR)-dependent inhibition of sirtuin 1. J Biol Chem 286:19100–19108

    Article  PubMed  CAS  Google Scholar 

  6. Baker D, Wijshake T, Tchkonia T, LeBrasseur N, Childs B et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–237

    Article  PubMed  CAS  Google Scholar 

  7. Baohua Y, Li L (2012) Effects of SIRT6 silencing on collagen metabolism in human dermal fibroblasts. Cell Biol Int 36:105–108

    Article  PubMed  Google Scholar 

  8. Benavente C, Schnell S, Jacobson E (2012) Effects of niacin restriction on sirtuin and PARP responses to photodamage in human skin. PLoS ONE 7:e42276. doi:10.1371/journal.pone.0042276

    Article  PubMed  CAS  Google Scholar 

  9. Bennett K, Mester J, Eng C (2010) Germline epigenetic regulation of KILLIN in Cowden and Cowden-like syndrome. JAMA 304:2724–2731

    Article  PubMed  CAS  Google Scholar 

  10. Blander G, Bhimavarapu A, Mammone T, Maes D, Elliston K et al (2009) SIRT1 promotes differentiation of normal human keratinocytes. J Invest Dermatol 129:41–49

    Article  PubMed  CAS  Google Scholar 

  11. Bordone L, Motta M, Picard F, Robinson A, Jhala U et al (2006) Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 4:e31

    Article  PubMed  Google Scholar 

  12. Bouras T, Fu M, Sauve A, Wang F, Quong A et al (2005) SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1. J Biol Chem 280:10264–10276

    Article  PubMed  CAS  Google Scholar 

  13. Calado R, Young N (2009) Telomere diseases. N Engl J Med 361:2353–2365

    Article  PubMed  CAS  Google Scholar 

  14. Camins A, Sureda F, Junyent F, Verdaguer E, Folch J et al (2010) Sirtuin activators: designing molecules to extend life span. Biochim Biophys Acta 1799:740–749

    Article  PubMed  CAS  Google Scholar 

  15. Campisi J, Yaswen P (2009) Aging and cancer cell biology. Aging Cell 8:221–225

    Article  PubMed  CAS  Google Scholar 

  16. Cao C, Lu S, Kivlin R, Wallin B, Card E et al (2009) SIRT1 confers protection against UVB- and H2O2-induced cell death via modulation of p53 and JNK in cultured skin keratinocytes. J Cell Mol Med 13:3632–3643

    Article  PubMed  Google Scholar 

  17. Chen M, Li J, Xiao W, Sun L, Tang H et al (2006) Protective effect of resveratrol against oxidative damage of UVA irradiated HaCaT cells. J Central South Univ 31:635–639

    CAS  Google Scholar 

  18. Civitarese A, Carling S, Heilbronn L, Hulver M, Ukropcova B et al (2007) Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med 4:e76

    Article  PubMed  Google Scholar 

  19. ClinicalTrials.gov. (1993–) US National Institute of Health. http://clinicaltrials.gov/ct2/search. Accessed September 1, 2012

  20. Cohen H, Miller C, Bitterman K, Wall N, Hekking B et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392

    Article  PubMed  CAS  Google Scholar 

  21. Colman R, Anderson R, Johnson S, Kastman E, Kosmatka K et al (2009) Caloric restriction delays disease onset and mortality in rhesus monkey. Science 325:201–204

    Article  PubMed  CAS  Google Scholar 

  22. Dai J, Wang Z, Sun D, Lin R, Wang S (2007) SIRT1 interacts with p73 and suppresses p73-dependent transcriptional activity. J Cell Physiol 210:161–166

    Article  PubMed  CAS  Google Scholar 

  23. DeFelice B, Wilson R, Nacca M (2009) Telomere shortening may be associated with human keloids. BMC Med Genet 10:110

    Article  Google Scholar 

  24. Denu J (2003) Linking chromatin function with metabolic networks: Sir2 family of NAD(+)-dependent deacetylases. Trends Biochem Sci 28:41–48

    Article  PubMed  CAS  Google Scholar 

  25. Donmez G, Guarente L (2010) Aging and disease: connection to sirtuins. Aging Cell 9:285–290

    Article  PubMed  CAS  Google Scholar 

  26. Dryden S, Nahhas F, Nowak J, Goustin A, Tainsky M (2003) Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 23:3173–3185

    Article  PubMed  CAS  Google Scholar 

  27. Emanuele E, Bertona M, Altabas K, Altabas V, Alessandrini G (2012) Anti-inflammatory effects of a topical preparation containing nicotinamide, retinol, and 7-dehydrocholesterol in patients with acne: a gene expression study. Clin Cosmet Investig Dermatol 5:33–37

    Article  PubMed  CAS  Google Scholar 

  28. Espada J, Ballestar E, Santoro R, Fraga M, Villar-Garea A et al (2007) Epigenetic disruption of ribosomal RNA genes and nucleolar architecture in DNA methyltransferase 1 (Dnmt1) deficient cells. Nucleic Acids Res 35:2191–2198

    Article  PubMed  CAS  Google Scholar 

  29. Fan W, Luo J (2010) SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol Cell 39:247–258

    Article  PubMed  CAS  Google Scholar 

  30. Ferreux E, Lont A, Horenblas S, Gallee M, Raaphorst F et al (2003) Evidence for at least three alternative mechanisms targeting the p16INK4A/cyclin D/Rb pathway in penile carcinoma, one of which is mediated by high-risk human papillomavirus. J Pathol 201:109–118

    Article  PubMed  CAS  Google Scholar 

  31. Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L (2006) Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev 20:1075–1080

    Article  PubMed  CAS  Google Scholar 

  32. Gao J, Wang W, Mao Y, Gräff J, Guan J et al (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466:1105–1109

    Article  PubMed  CAS  Google Scholar 

  33. Gao Z, Ye J (2008) Inhibition of transcriptional activity of c-JUN by SIRT1. Biochem Biophys Res Commun 376:793–796

    Article  PubMed  CAS  Google Scholar 

  34. Goihman-Yahr M (1996) Skin aging and photoaging: an outlook. Clin Dermatol 14:153–160

    Article  PubMed  CAS  Google Scholar 

  35. Guarente L (2008) Mitochondria—A nexus for aging, calorie restriction, and sirtuins? Cell 132:171–176

    Article  PubMed  CAS  Google Scholar 

  36. Guarente L, Picard F (2005) Calorie restriction—the SIR2 connection. Cell 120:473–482

    Article  PubMed  CAS  Google Scholar 

  37. Haigis M, Mostoslavsky R, Haigis K, Fahie K, Christodoulou D et al (2006) SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126:941–954

    Article  PubMed  CAS  Google Scholar 

  38. Haigis M, Sinclair D (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5:253–295

    Article  PubMed  CAS  Google Scholar 

  39. Hida Y, Kubo Y, Murao K, Arase S (2007) Strong expression of a longevity-related protein, SIRT1, in Bowen’s disease. Arch Dermatol Res 299:103–106

    Article  PubMed  CAS  Google Scholar 

  40. Hu N, Long H, Zhao M, Yin H, Lu Q (2009) Aberrant expression pattern of histone acetylation modifiers and mitigation of lupus by SIRT1-siRNA in MRL/lpr mice. Scand J Rheumatol 38:464–471

    Article  PubMed  CAS  Google Scholar 

  41. Huang D, Ostrosky-Zeichner L, Wu J, Pang K, Tyring S (2004) Therapy of common superficial fungal infections. Dermatol Ther 17:517–522

    Article  PubMed  Google Scholar 

  42. Inoue T, Hiratsuka M, Osaki M, Yamada H, Hishimoto I et al (2007) SIRT2, a tubulin deacetylase, acts to block the entry to chromosome condensation in response to mitotic stress. Oncogene 26:945–957

    Article  PubMed  CAS  Google Scholar 

  43. Jin Y, Kim Y, Kim D, Baek K, Kang B et al (2008) Sirt2 interacts with 14-3-3 beta/gamma and down-regulates the activity of p53. Biochem Biophys Res Commun 368:690–695

    Article  PubMed  CAS  Google Scholar 

  44. Kalergis A, Iruretagoyena M, Barrientos M, Gonzalez P, Herrada A et al (2008) Modulation of nuclear factor-kappaB activity can influence the susceptibility to systemic lupus erythematosus. Immunology 128(1 Suppl):e306–e314

    PubMed  Google Scholar 

  45. Kawahara T, Michishita E, Adler A, Damian M, Berber E et al (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136:62–74

    Article  PubMed  CAS  Google Scholar 

  46. Keppler B, Archer T (2008) Chromatin-modifying enzymes as therapeutic targets—Part 1. Expert Opin Ther Targets 12:1301–1312

    Article  PubMed  CAS  Google Scholar 

  47. Knoch J, Kamenisch Y, Kubisch C, Berneburg M (2012) Rare hereditary diseases with defects in DNA-repair. Eur J Dermatol 22:443–455

    PubMed  CAS  Google Scholar 

  48. Kume S, Haneda M, Kanasaki K, Sugimoto T, Araki S et al (2007) SIRT1 inhibits transforming growth factor beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. J Biol Chem 282:151–158

    Article  PubMed  CAS  Google Scholar 

  49. Lain S, Hollick J, Campbell J, Staples O, Higgins M et al (2008) Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13:454–463

    Article  PubMed  CAS  Google Scholar 

  50. Lasserre C, D’Arcangelis A, Mildner M, Bhatt P, Tschachler E (2007) The effect of ultraviolet irradiation on sirtuin expression in human skin. J Invest Dermatol 127:S57. doi:10.1038/sj.jid.5701090

    Google Scholar 

  51. Lee J, Park K, Min H, Lee S, Kim J et al (2010) Negative regulation of stress-induced matrix metalloproteinase-9 by Sirt1 in skin tissue. Exp Dermatol 19:1060–1066

    Article  PubMed  CAS  Google Scholar 

  52. Lennerz V, Fatho M, Gentilini C, Frye R, Lifke A et al (2005) The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA 102:16013–16018

    Article  PubMed  CAS  Google Scholar 

  53. Li L, Wu L, Tashiro S, Onodera S, Uchiumi F, Ikejima T (2007) Activation of the SIRT1 pathway and modulation of the cell cycle were involved in silymarin’s protection against UV-induced A375–S2 cell apoptosis. J Asian Nat Prod Res 9:242–252

    Google Scholar 

  54. Li X, Zhang S, Blander G, Tse J, Krieger M, Guarente L (2007) SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cell 28:91–106

    Article  PubMed  Google Scholar 

  55. Liszt G, Ford E, Kurtev M, Guarente L (2005) Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 280:21313–21320

    Article  PubMed  CAS  Google Scholar 

  56. Lombard D, Chua K, Mostoslavsky R, Franco S, Gostissa M (2005) DNA repair, genome stability, and aging. Cell 120:497–512

    Article  PubMed  CAS  Google Scholar 

  57. Markovic S, Erickson L, Rao R, Weenig R, Pockaj B et al (2007) Malignant melanoma in the 21st century, part 1: epidemiology, risk factors, screening, prevention, and diagnosis. Mayo Clin Proc 82:364–380

    PubMed  Google Scholar 

  58. Menter A, Gottlieb A, Feldman S, Voorhees AV, Leonardi C et al (2008) Guidelines of care for the management of psoriasis and psoriatic arthritis: Section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics. J Am Acad Dermatol 58:826–850

    Article  PubMed  Google Scholar 

  59. Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13

    Article  PubMed  CAS  Google Scholar 

  60. Michishita E, McCord R, Berber E, Kioi M, Padilla-Nash H et al (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452:492–496

    Article  PubMed  CAS  Google Scholar 

  61. Michishita E, Park J, Burneskis J, Barrett J, Horikawa I (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16:4623–4635

    Article  PubMed  CAS  Google Scholar 

  62. Ming M, Shea C, Guo X, Li X, Soltani K et al (2010) Regulation of global genome nucleotide excision repair by SIRT1 through xeroderma pigmentosum C. Proc Natl Acad Sci USA 107:22623–22628

    Article  PubMed  CAS  Google Scholar 

  63. Moreau M, Neveu M, Stephan S, Noblesse E, Nizard C et al (2007) Enhancing cell longevity for cosmetic application: a complementary approach. J Drugs Dermatol 6:s14–s19

    PubMed  Google Scholar 

  64. Mostoslavsky R, Chua K, Lombard D, Pang W, Fischer M et al (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124:315–329

    Article  PubMed  CAS  Google Scholar 

  65. Motta M, Divecha N, Lemieux M, Kamel C, Chen D, Gu W et al (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116:551–563

    Article  PubMed  CAS  Google Scholar 

  66. Nagel A, Hert M, Eming R (2009) B-cell-directed therapy for inflammatory skin diseases. J Invest Dermatol 129:289–301

    Article  PubMed  CAS  Google Scholar 

  67. Nakamaru Y, Vuppusetty C, Wada H, Milne J, Ito M et al (2009) A protein deacetylase SIRT1 is a negative regulator of metalloproteinase-9. FASEB J 23:2810–2819

    Article  PubMed  CAS  Google Scholar 

  68. Navarrete-Solís J, Castanedo-Cázares J, Torres-Álvarez B, Oros-Ovalle C, Fuentes-Ahumada C et al (2011) A double-blind, randomized clinical trial of niacinamide 4% versus hydroquinone 4% in the treatment of melasma. Dermatol Res Pract 2011:379173–379177

    PubMed  Google Scholar 

  69. Peng L, Yuan Z, Ling H, Fukasawa K, Robertson K et al (2011) SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol Cell Biol 31:4720–4734

    Article  PubMed  CAS  Google Scholar 

  70. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T et al (2004) Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429:771–776

    Article  PubMed  CAS  Google Scholar 

  71. Pradhan S, Girish C (2006) Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. Indian J Med Res 124:491–504

    PubMed  CAS  Google Scholar 

  72. Rajamohan S, Pillai V, Gupta M, Sundaresan N, Birukov K et al (2009) SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1. Mol Cell Biol 29:4116–4129

    Article  PubMed  CAS  Google Scholar 

  73. Rogers H, Weinstock M, Harris A, Hinckley M, Feldman S et al (2010) Incidence estimate of nonmelanoma skin cancer in the United States, 2006. Arch Dermatol 146:283–287

    Article  PubMed  Google Scholar 

  74. Rothfield N, Sontheimer R, Bernstein M (2006) Lupus erythematosus: systemic and cutaneous manifestations. Clin Dermatol 24:348–362

    Article  PubMed  Google Scholar 

  75. Ruhnke M (2006) Epidemiology of Candida albicans infections and role of non-Candida albicans yeasts. Curr Drug Targets 7:495–504

    Article  PubMed  CAS  Google Scholar 

  76. Salimen A, Kaarniranta K (2009) NF-kappaB signaling in the aging process. J Clin Immunol 29:397–405

    Article  Google Scholar 

  77. Scher M, Vaquero A, Reinberg D (2007) SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev 21:920–928

    Article  PubMed  CAS  Google Scholar 

  78. Schlicker C, Gertz M, Papatheodorou P, Kachholz B, Becker C, Steegborn C (2008) Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J Mol Biol 382:790–801

    Article  PubMed  CAS  Google Scholar 

  79. Schwer B, Bunkenborg J, Verdin R, Andersen J, Verdin E (2006) Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc Natl Acad Sci USA 103:10224–10229

    Article  PubMed  CAS  Google Scholar 

  80. Sequiera J, Boily G, Bazinet S, Saliba S, He X et al (2008) Sirt1-null mice develop an autoimmune-like condition. Exp Cell Res 314:3069–3074

    Article  Google Scholar 

  81. Shih B, Bayat A (2010) Genetics of keloid scarring. Arch Dermatol Res 302:319–339

    Article  PubMed  CAS  Google Scholar 

  82. Sundaresan N, Samant S, Pillai V, Rajamohan S, Gupta M (2008) SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 28:6384–6401

    Article  PubMed  CAS  Google Scholar 

  83. Surjana D, Halliday G, Martin A, Moloney F, Damian D (2012) Oral nicotinamide reduces actinic keratoses in phase II double-blinded randomized controlled trials. J Invest Dermatol 132:1497–1500

    Article  PubMed  CAS  Google Scholar 

  84. Turner B (2000) Histone acetylation and an epigenetic code. BioEssays 22:836–845

    Article  PubMed  CAS  Google Scholar 

  85. VanGool F, Galli M, Gueydan C, Kruys V, Bedalov A et al (2009) Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nat Med 15:206–210

    Article  CAS  Google Scholar 

  86. Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D (2004) Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16:93–105

    Article  PubMed  CAS  Google Scholar 

  87. Vaziri H, Dessain S, Ng E, Imai S, Frye R et al (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159

    Article  PubMed  CAS  Google Scholar 

  88. Wang C, Chen L, Hou X, Li Z, Kabra N et al (2006) Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 8:1025–1031

    Article  PubMed  CAS  Google Scholar 

  89. Wang C, Wang M, Tashiro S, Onodera S, Ikejima T (2005) Roles of SIRT1 and phosphoinositide 3-OH kinase/protein kinase C pathways in evodiamine-induced human melanoma A375–S2 cell death. J Pharmacol Sci 97:494–500

    Article  PubMed  CAS  Google Scholar 

  90. Wang F, Nguyen M, Qin FX, Tong Q (2007) SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6:505–514

    Article  PubMed  CAS  Google Scholar 

  91. Wang J, Chen J (2010) SIRT1 regulates autoacetylation and histone acetyltransferase activity of TIP60. J Biol Chem 285:11458–11464

    Article  PubMed  CAS  Google Scholar 

  92. Wong S, Weber J (2007) Deacetylation of the retinoblastoma tumour suppressor protein by SIRT1. Biochem J 407:451–460

    Article  PubMed  CAS  Google Scholar 

  93. Wurtele H, Tsao S, Lépine G, Mullick A, Tremblay J et al (2010) Modulation of histone H3 lysine 56 acetylation as an antifungal therapeutic strategy. Nat Med 16:774–780

    Article  PubMed  CAS  Google Scholar 

  94. Yeung F, Hoberg J, Ramsey C, Keller M, Jones D et al (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380

    Article  PubMed  CAS  Google Scholar 

  95. Yuan H, Marmorstein R (2012) Structural basis for sirtuin activity and inhibition. J Biol Chem 287:42428–42435

    Article  PubMed  CAS  Google Scholar 

  96. Yuan Z, Zhang X, Sengupta N, Lane W, Seto E (2007) SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Mol Cell 27:149–162

    Article  PubMed  CAS  Google Scholar 

  97. Zhu X, Liu Q, Wang M, Liang M, Yang X et al (2011) Activation of Sirt1 by resveratrol inhibits TNF-a induced inflammation in fibroblasts. PLoS ONE 6:e27081

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No funding was received.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared Jagdeo.

Additional information

M. Serravallo and J. Jagdeo contributed equally to the preparation of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serravallo, M., Jagdeo, J., Glick, S.A. et al. Sirtuins in dermatology: applications for future research and therapeutics. Arch Dermatol Res 305, 269–282 (2013). https://doi.org/10.1007/s00403-013-1320-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-013-1320-2

Keywords

Navigation