Skip to main content

Advertisement

Log in

Normal and PPP-affected palmoplantar sweat gland express neuroendocrine markers chromogranins and synaptophysin differently

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Earlier findings indicate the acrosyringium as the target for the inflammation in the chronic and intensely inflammatory skin disease palmoplantar pustulosis (PPP). The sweat gland apparatus seems to be an immune-competent structure that probably contributes to the defence of the skin. Furthermore, the sweat gland and duct may be a hitherto unrecognized neuroendocrine organ because it expresses cholineacetyl-transferase and acetylcholinesterase, nicotinic receptors, beta-adrenergic and angiotensin receptors. The aim of this study was to obtain further information about neuroendocrine properties of the sweat gland apparatus by examining the expression of common neuroendocrine markers synaptophysin and chromogranins A and B in healthy palmar skin and in PPP skin. Synaptophysin and chromogranins were expressed in the sweat glands and ducts with some variation in the pattern and intensity of the expression. In PPP skin the expression differed, being higher and lower, depending on the part of the sweat duct. Chromogranins were further expressed in the epidermis, endothelium and inflammatory cells, but its intensity was weaker in epidermis than in the sweat gland apparatus. In most cases, chromogranins in epidermis in involved PPP were weakly expressed compared to healthy controls. The presence of synaptophysin and chromogranins in palmoplantar skin may have marked neuroendocrine effects, and the palmoplantar skin is likely to have important neuroimmuno-endocrine properties. Moreover, the altered chromogranin expression in PPP skin might influence both the neuroendocrine and neuroimmunologic properties of palmoplantar skin in these patients. These results indicate important neuroendocrine properties of the palmoplantar skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Angeletti RH, Hickey WF (1985) A neuroendocrine marker in tissues of the immune system. Science 230:89–90

    Article  CAS  PubMed  Google Scholar 

  2. Eriksson MO, Hagforsen E, Lundin IP, Michaelsson G (1998) Palmoplantar pustulosis: a clinical and immunohistological study. Br J Dermatol 138:390–398

    Article  CAS  PubMed  Google Scholar 

  3. Fischer-Colbrie R, Kirchmair R, Kahler CM, Wiedermann CJ, Saria A (2005) Secretoneurin: a new player in angiogenesis and chemotaxis linking nerves, blood vessels and the immune system. Curr Protein Pept Sci 6:373–385

    Article  CAS  PubMed  Google Scholar 

  4. Galindo E, Rill A, Bader MF, Aunis D (1991) Chromostatin, a 20-amino acid peptide derived from chromogranin A, inhibits chromaffin cell secretion. Proc Natl Acad Sci USA 88:1426–1430

    Article  CAS  PubMed  Google Scholar 

  5. Hagforsen E (2007) The cutaneous non-neuronal cholinergic system and smoking related dermatoses: studies of the psoriasis variant palmoplantar pustulosis. Life Sci 80:2227–2234

    Article  CAS  PubMed  Google Scholar 

  6. Hagforsen E, Hedstrand H, Nyberg F, Michaelsson G (2010) Novel findings of Langerhans cells and IL-17 expression in relation to the acrosyringium and pustule in palmoplantar pustulosis. Br J Dermatol. doi:10.1111/j.1365-2133.2010.09819.x

  7. Hagforsen E, Michaelsson K, Lundgren E et al (2005) Women with palmoplantar pustulosis have disturbed calcium homeostasis and a high prevalence of diabetes mellitus and psychiatric disorders: a case-control study. Acta Derm Venereol 85:225–232

    CAS  PubMed  Google Scholar 

  8. Hagforsen E, Nordlind K, Michaelsson G (2000) Skin nerve fibres and their contacts with mast cells in patients with palmoplantar pustulosis. Arch Dermatol Res 292:269–274

    Article  CAS  PubMed  Google Scholar 

  9. Hartschuh W, Weihe E, Egner U (1989) Chromogranin A in the mammalian Merkel cell: cellular and subcellular distribution. J Invest Dermatol 93:641–648

    Article  CAS  PubMed  Google Scholar 

  10. Helle KB (2004) The granin family of uniquely acidic proteins of the diffuse neuroendocrine system: comparative and functional aspects. Biol Rev Camb Philos Soc 79:769–794

    Article  PubMed  Google Scholar 

  11. Kahler CM, Schratzberger P, Kaufmann G et al (2002) Transendothelial migration of leukocytes and signalling mechanisms in response to the neuropeptide secretoneurin. Regul Pept 105:35–46

    Article  CAS  PubMed  Google Scholar 

  12. Kim JE, Cho DH, Kim HS et al (2007) Expression of the corticotropin-releasing hormone-proopiomelanocortin axis in the various clinical types of psoriasis. Exp Dermatol 16:104–109

    Article  PubMed  Google Scholar 

  13. Kirchmair R, Hogue-Angeletti R, Gutierrez J, Fischer-Colbrie R, Winkler H (1993) Secretoneurin–a neuropeptide generated in brain, adrenal medulla and other endocrine tissues by proteolytic processing of secretogranin II (chromogranin C). Neuroscience 53:359–365

    Article  CAS  PubMed  Google Scholar 

  14. Lukinius A, Stridsberg M, Wilander E (2003) Cellular expression and specific intragranular localization of chromogranin A, chromogranin B, and synaptophysin during ontogeny of pancreatic islet cells: an ultrastructural study. Pancreas 27:38–46

    Article  CAS  PubMed  Google Scholar 

  15. Mahata SK, O’Connor DT, Mahata M et al (1997) Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J Clin Invest 100:1623–1633

    Article  CAS  PubMed  Google Scholar 

  16. Marksteiner J, Kirchmair R, Mahata SK et al (1993) Distribution of secretoneurin, a peptide derived from secretogranin II, in rat brain: an immunocytochemical and radioimmunological study. Neuroscience 54:923–944

    Article  CAS  PubMed  Google Scholar 

  17. McGregor JM, Barker JN, Allen MH, MacDonald DM (1991) Antigenic profile of human acrosyringium. Br J Dermatol 125:413–418

    Article  CAS  PubMed  Google Scholar 

  18. Molenaar WM, Lee VM, Trojanowski JQ (1990) Early fetal acquisition of the chromaffin and neuronal immunophenotype by human adrenal medullary cells. An immunohistological study using monoclonal antibodies to chromogranin A, synaptophysin, tyrosine hydroxylase, and neuronal cytoskeletal proteins. Exp Neurol 108:1–9

    Article  CAS  PubMed  Google Scholar 

  19. Murakami M, Ohtake T, Dorschner RA, Schittek B, Garbe C, Gallo RL (2002) Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol 119:1090–1095

    Article  CAS  PubMed  Google Scholar 

  20. Portela-Gomes GM, Stridsberg M (2002) Chromogranin A in the human gastrointestinal tract: an immunocytochemical study with region-specific antibodies. J Histochem Cytochem 50:1487–1492

    CAS  PubMed  Google Scholar 

  21. Portela-Gomes GM, Stridsberg M (2002) Region-specific antibodies to chromogranin B display various immunostaining patterns in human endocrine pancreas. J Histochem Cytochem 50:1023–1030

    CAS  PubMed  Google Scholar 

  22. Portela-Gomes GM, Stridsberg M (2001) Selective processing of chromogranin A in the different islet cells in human pancreas. J Histochem Cytochem 49:483–490

    CAS  PubMed  Google Scholar 

  23. Radek KA, Lopez-Garcia B, Hupe M et al (2008) The neuroendocrine peptide catestatin is a cutaneous antimicrobial and induced in the skin after injury. J Invest Dermatol 128:1525–1534

    Article  CAS  PubMed  Google Scholar 

  24. Reitamo S, Anttila HS, Didierjean L, Saurat JH (1990) Immunohistochemical identification of interleukin I alpha and beta in human eccrine sweat-gland apparatus. Br J Dermatol 122:315–323

    Article  CAS  PubMed  Google Scholar 

  25. Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M (2006) Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol Rev 86:1309–1379

    Article  CAS  PubMed  Google Scholar 

  26. Russell J, Gee P, Liu SM, Angeletti RH (1994) Inhibition of parathyroid hormone secretion by amino-terminal chromogranin peptides. Endocrinology 135:337–342

    Article  CAS  PubMed  Google Scholar 

  27. Schittek B, Hipfel R, Sauer B et al (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2:1133–1137

    Article  CAS  PubMed  Google Scholar 

  28. Slominski A, Wortsman J, Pisarchik A et al (2001) Cutaneous expression of corticotropin-releasing hormone (CRH), urocortin, and CRH receptors. FASEB J 15:1678–1693

    Article  CAS  PubMed  Google Scholar 

  29. Slominski A, Zbytek B, Zmijewski M et al (2006) Corticotropin releasing hormone and the skin. Front Biosci 11:2230–2248

    Article  CAS  PubMed  Google Scholar 

  30. Stridsberg M, Lundqvist G, Engstrom U et al (1994) Development of polyclonal antibodies and evaluation of a sensitive radioimmunoassay for detection and measurement of synaptophysin. Acta Neuropathol 87:635–641

    Article  CAS  PubMed  Google Scholar 

  31. Strub JM, Goumon Y, Lugardon K et al (1996) Antibacterial activity of glycosylated and phosphorylated chromogranin A-derived peptide 173–194 from bovine adrenal medullary chromaffin granules. J Biol Chem 271:28533–28540

    Article  CAS  PubMed  Google Scholar 

  32. Takeda H, Kondo S (2001) Immunohistochemical study of angiotensin receptors in normal human sweat glands and eccrine poroma. Br J Dermatol 144:1189–1192

    Article  CAS  PubMed  Google Scholar 

  33. Taupenot L, Harper KL, O’Connor DT (2003) The chromogranin-secretogranin family. N Engl J Med 348:1134–1149

    Article  CAS  PubMed  Google Scholar 

  34. Wiedenmann B, Franke WW, Kuhn C, Moll R, Gould VE (1986) Synaptophysin: a marker protein for neuroendocrine cells and neoplasms. Proc Natl Acad Sci USA 83:3500–3504

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Swedish Psoriasis Association, the E Welander and Finsen Foundations, the Swedish Medical Society and the Medical Faculty of the University of Uppsala.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Hagforsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagforsen, E., Michaëlsson, G. & Stridsberg, M. Normal and PPP-affected palmoplantar sweat gland express neuroendocrine markers chromogranins and synaptophysin differently. Arch Dermatol Res 302, 685–693 (2010). https://doi.org/10.1007/s00403-010-1070-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-010-1070-3

Keywords

Navigation