Skip to main content

Advertisement

Log in

Acute stretch promotes endothelial cell proliferation in wounded healing mouse skin

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

We have developed a novel in vivo model utilizing acute stretch to investigate endothelial cell proliferation as a marker of vascular growth in healing mouse skin. This study is a follow-up to ones revealing immediate stretch improves blood flow, decreases total tissue necrosis, and induces tissue insulin transcription. Dorsal distally based flaps of skin were stretched for 3 min using linear (skin hook) plus hemispherical load cycling (inflated subcutaneous silicone catheter). Unstretched, wounded skin along the back and sternum served as postoperative controls. Laser Doppler flowmetry demonstrated a threefold increase in flap perfusion at postoperative day 7. A stretch-induced sixfold increase in endothelial cell mitogenesis accompanied enhancements in blood flow and extracorporal wound healing over the sternum. Western blots revealed up-regulation/activation of insulin and mitogenic signaling intermediates in stretched skin. Activated insulin and insulin growth factor receptors (pIR/pIGFR), protein kinase B (Akt, pAkt), vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor 2 (flk-1) were among the identified stretch-responsive intermediates. These results indicate the benefits of acute stretch are mediated through enhanced vascularity as evidenced by endothelial cell mitogenesis and up-regulation/activation of insulin and key angiogenic effectors in dorsal distally based skin flaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Badr I, Brown MD, Egginton S, Hudlicka O, Milkiewicz M, Verhaeg J (2003) Differences in local environment determine the site of physiological angiogenesis in rat skeletal muscle. Exp Physiol 88:565–568

    Article  PubMed  CAS  Google Scholar 

  2. Beeson M, Sajan MP, Dizon M, Grebenev D, Gomez-Daspet J, Miura A, Kanoh Y, Powe J, Bandyopadhyay G, Standaert ML, Farese RV (2003) Activation of protein kinase C-zeta by insulin and phosphatidylinositol-3,4,5-(PO4)3 is defective in muscle in type 2 diabetes and impaired glucose tolerance: amelioration by rosiglitazone and exercise. Diabetes 52:1926–1934

    Article  PubMed  CAS  Google Scholar 

  3. Brewster L, Brey EM, Addis M, Xue L, Husak V, Ellinger J, Haudenschild CC, Greisler HP (2006) Improving endothelial healing with novel chimeric mitogens. Am J Surg 192:589–593

    Article  PubMed  CAS  Google Scholar 

  4. Brey EM, Uriel S, Greisler HP, McIntire LV (2005) Therapeutic neovascularization: contributions from bioengineering. Tissue Eng 11:567–584

    Article  PubMed  CAS  Google Scholar 

  5. Brown MD, Kent J, Kelsall CJ, Milkiewicz M, Hudlicka O (2003) Remodeling in the microcirculation of rat skeletal muscle during chronic ischemia. Microcirculation 10:179–191

    Article  PubMed  CAS  Google Scholar 

  6. Chau CH, Chen KY, Deng HT, Kim KJ, Hosoya K, Terasaki T, Shih HM, Ann DK (2002) Coordinating Etk/Bmx activation and VEGF upregulation to promote cell survival and proliferation. Oncogene 21:8817–8829

    Article  PubMed  CAS  Google Scholar 

  7. Davis GE, Saunders WB (2006) Molecular balance of capillary tube formation versus regression in wound repair: role of matrix metalloproteinases and their inhibitors. J Investig Dermatol Symp Proc 11:44–56

    Article  PubMed  CAS  Google Scholar 

  8. Folkman J (2003) Fundamental concepts of the angiogenic process. Curr Mol Med 3:643–651

    Article  PubMed  CAS  Google Scholar 

  9. Gordon SR (2002) Microfilament disruption in a noncycling organized tissue, the corneal endothelium, initiates mitosis. Exp Cell Res 272:127–134

    Article  PubMed  CAS  Google Scholar 

  10. Haas TL (2002) Molecular control of capillary growth in skeletal muscle. Can J Appl Physiol 27:491–515

    PubMed  CAS  Google Scholar 

  11. Hochberg J, Raman M, Cilento E, Kemp K, Barrett M, Thomas R, Reilly F (1994) Development and evaluation of an in vivo mouse model for studying myocutaneous flap microcirculation and viability before and after suturing or stapling. Int J Microcirc Clin Exp 14:67–72

    Article  PubMed  CAS  Google Scholar 

  12. Hochberg J, Beasley M, Jennings T, Zhu X, Boo S, Cilento EV, Reilly FD (1998) Effects of hold time, cycling, and catheter fill-volume on the reported benefits of rapid intraoperative tissue expansion over simple undermining. Plast Surg Forum 286–289

  13. Hochberg J, Zhu X, Beasley M, Cilento E, Reilly F (2000) The best estimates of total perfusion are from the base of myocutaneous flaps. In: Plast Surg Forum 452

  14. Hudlicka O (1998) Is physiological angiogenesis in skeletal muscle regulated by changes in microcirculation? Microcirculation 5:5–23

    Article  PubMed  CAS  Google Scholar 

  15. Ingber DE (2002) Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91:877–887

    Article  PubMed  CAS  Google Scholar 

  16. Joung IS, Iwamoto MN, Shiu YT, Quam CT (2006) Cyclic strain modulates tubulogenesis of endothelial cells in a 3D tissue culture model. Microvasc Res 71:1–11

    Article  PubMed  Google Scholar 

  17. Kanda S, Mochizuki Y, Kanetake H (2003) Stromal cell-derived factor-1alpha induces tube-like structure formation of endothelial cells through phosphoinositide 3-kinase. J Biol Chem 278:257–262

    Article  PubMed  CAS  Google Scholar 

  18. Kawaguchi M, Koshimura K, Sohmiya M, Murakami Y, Gonda T, Kato Y (2001) Effect of insulin on nitric oxide synthase-like immunostaining of arteries in various organs in Zucker diabetic fatty rats. Eur J Endocrinol 145:343–349

    Article  PubMed  CAS  Google Scholar 

  19. Kawamura A, Horie T, Tsuda I, Abe Y, Yamada M, Egawa H, Iida J, Sakata H, Onodera K, Tamaki T, Furui H, Kukita K, Meguro J, Yonekawa M, Tanaka S (2006) Clinical study of therapeutic angiogenesis by autologous peripheral blood stem cell (PBSC) transplantation in 92 patients with critically ischemic limbs. J Artif Organs 9:226–233

    Article  PubMed  Google Scholar 

  20. Kelkar BR (2003) Induced angiogenesis for limb ischemia. Clin Orthop Relat Res 234–240

  21. Kim KE, Cho CH, Kim HZ, Baluk P, McDonald DM, Koh GY (2006) In vivo actions of angiopoietins on quiescent and remodeling blood and lymphatic vessels in mouse airways and skin. Arterioscler Thromb Vasc Biol

  22. Kobayashi T, Kamata K (2002) Short-term insulin treatment and aortic expressions of IGF-1 receptor and VEGF mRNA in diabetic rats. Am J Physiol Heart Circ Physiol 283:H1761–H1768

    PubMed  CAS  Google Scholar 

  23. Laing AJ, Dillon JP, Condon ET, Street JT, Wang JH, McGuinness AJ, Redmond HP (2007) Mobilization of endothelial precursor cells: systemic vascular response to musculoskeletal trauma. J Orthop Res 25:44–50

    Article  PubMed  CAS  Google Scholar 

  24. Layton CJ, Becker S, Osborne NN (2006) The effect of insulin and glucose levels on retinal glial cell activation and pigment epithelium-derived fibroblast growth factor-2. Mol Vis 12:43–54

    PubMed  CAS  Google Scholar 

  25. Li S, Huang NF, Hsu S (2005) Mechanotransduction in endothelial cell migration. J Cell Biochem 96:1110–1126

    Article  PubMed  CAS  Google Scholar 

  26. Linn T, Erb D, Schneider D, Kidszun A, Elcin AE, Bretzel RG, Elcin YM (2003) Polymers for induction of revascularization in the rat fascial flap: application of vascular endothelial growth factor and pancreatic islet cells. Cell Transplant 12:769–778

    PubMed  Google Scholar 

  27. Luo J, Miller MW (1996) Ethanol inhibits basic fibroblast growth factor-mediated proliferation of C6 astrocytoma cells. J Neurochem 67:1448–1456

    Article  PubMed  CAS  Google Scholar 

  28. Luo J, Lang JA, Miller MW (1998) Transforming growth factor beta1 regulates the expression of cyclooxygenase in cultured cortical astrocytes and neurons. J Neurochem 71:526–534

    PubMed  CAS  Google Scholar 

  29. Machida BK, Liu-Shindo M, Sasaki GH, Rice DH, Chandrasoma P (1991) Immediate versus chronic tissue expansion. Ann Plast Surg 26:227–231

    Article  PubMed  CAS  Google Scholar 

  30. Marino-Buslje C, Martin-Martinez M, Mizuguchi K, Siddle K, Blundell TL (1999) The insulin receptor: from protein sequence to structure. Biochem Soc Trans 27:715–726

    PubMed  CAS  Google Scholar 

  31. Milkiewicz M, Brown MD, Egginton S, Hudlicka O (2001) Association between shear stress, angiogenesis, and VEGF in skeletal muscles in vivo. Microcirculation 8:229–241

    Article  PubMed  CAS  Google Scholar 

  32. Munoz-Chapuli R, Gonzalez-Iriarte M, Carmona R, Atencia G, Macias D, Perez-Pomares JM (2002) Cellular precursors of the coronary arteries. Tex Heart Inst J 29:243–249

    PubMed  Google Scholar 

  33. Neuman CA (1957) The expansion of an area of skin by progressive distension of subcutaneous balloon. Plast Reconstr Surg 124–130

  34. Pelegrinelli FF, Thirone AC, Gasparetti AL, Araujo EP, Velloso LA, Saad MJ (2001) Early steps of insulin action in the skin of intact rats. J Invest Dermatol 117:971–976

    Article  PubMed  CAS  Google Scholar 

  35. Sasaki GH (1987) Intraoperative sustained limited expansion (ISLE) as an immediate reconstructive technique. Clin Plast Surg 14:563–573

    PubMed  CAS  Google Scholar 

  36. Schramm JC, Dinh T, Veves A (2006) Microvascular changes in the diabetic foot. Int J Low Extrem Wounds 5:149–159

    Article  PubMed  Google Scholar 

  37. Shiu YT, Weiss JA, Hoying JB, Iwamoto MN, Joung IS, Quam CT (2005) The role of mechanical stresses in angiogenesis. Crit Rev Biomed Eng 33:431–510

    Article  PubMed  Google Scholar 

  38. Siegert R, Weerda H, Hoffmann S, Mohadjer C (1993) Clinical and experimental evaluation of intermittent intraoperative short-term expansion. Plast Reconstr Surg 92:248–254

    Article  PubMed  CAS  Google Scholar 

  39. Sieminski AL, Gooch KJ (2000) Biomaterial-microvasculature interactions. Biomaterials 21:2232–2241

    Article  PubMed  CAS  Google Scholar 

  40. Sundell J, Knuuti J (2003) Insulin and myocardial blood flow. Cardiovasc Res 57:312–319

    Article  PubMed  CAS  Google Scholar 

  41. Wertheimer E, Trebicz M, Eldar T, Gartsbein M, Nofeh-Moses S, Tennenbaum T (2000) Differential roles of insulin receptor and insulin-like growth factor-1 receptor in differentiation of murine skin keratinocytes. J Invest Dermatol 115:24–29

    Article  PubMed  CAS  Google Scholar 

  42. Yu X, Rajala RV, McGinnis JF, Anderson RE, Yan X, Li S, Elias RV, Knapp RR, Zhou X, Cao W (2004) Involvement of insulin/phosphoinositide 3-kinase/akt signal pathway in 17-estradiol-mediated neuroprotection. J Biol Chem 279:13086–13094

    Article  PubMed  CAS  Google Scholar 

  43. Zhu X, Hall D, Ridenour G, Boo S, Jennings T, Hochberg J, Cilento E, Reilly F (2003) A mouse model for studying rapic intraoperative methods of skin closure and wound healing. Med Sci Monit 9:109–115

    Google Scholar 

  44. Zhu Y, Luo J, Barker J, Hochberg J, Cilento E, Reilly F (2002) Identification of genes induced by rapid intraoperative tissue expansion in mouse skin. Arch Dermatol Res 293:560–568

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by interim funds from the WVU Department of Neurobiology and Anatomy (account #: DA491030020 fund #: 12301430) and WVU College of Engineering and Mineral Resources (account #: DA310880010 fund #: 11100124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank D. Reilly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shrader, C.D., Ressetar, H.G., Luo, J. et al. Acute stretch promotes endothelial cell proliferation in wounded healing mouse skin. Arch Dermatol Res 300, 495–504 (2008). https://doi.org/10.1007/s00403-008-0836-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-008-0836-3

Keywords

Navigation