Skip to main content
Log in

Evaluation of cytochrome P450 activity in vitro, using dermal and hepatic microsomes from four species and two keratinocyte cell lines in culture

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

The Cytochrome P450 (CYP450) enzymes are expressed in the skin, and despite a low activity, as compared to the hepatic counterpart, a role during transdermal delivery of a drug cannot be excluded. Additionally, the enzymes may play a role in local toxicity, and further knowledge of dermal CYP450 activity can contribute to elucidate this issue. To achieve this, a cocktail of six selective CYP450 probe substrates were incubated with dermal and hepatic microsomes isolated from mouse, rat, minipig and man. Different species were used to evaluate if a reliable substitute for human tissue was possible. Further, the hepatic microsomes were included in this study, to estimate if the hepatic CYP450 activity is predictive of dermal CYP450 activity. The CYP450 activity was determined in two keratinocyte cell lines as well, as this in vitro model is desirable due to the ease in handling, among other factors. Overall, the metabolism found in the dermal microsomes was very low, and major differences were observed between species. When comparing the activities in dermal and hepatic microsomes, the qualitative pattern was to some extent similar within species, but also a number of differences were observed. The CYP450 metabolic activity in the two keratinocyte cell lines was not comparable to metabolism in the human dermal microsomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altenburger R, Kissel T (1999) The human keratinocyte cell line HaCaT: an in vitro cell culture model for keratinocyte testosterone metabolism. Pharm Res 16:766–771

    Article  PubMed  CAS  Google Scholar 

  2. Baron JM, Holler D, Schiffer R, Frankenberg S, Neis M, Merk HF, Jugert FK (2001) Expression of multiple cytochrome p450 enzymes and multidrug resistance-associated transport proteins in human skin keratinocytes. J Invest Dermatol 116:541–548

    Article  PubMed  CAS  Google Scholar 

  3. Berghard A, Gradin K, Toftgard R (1990) Serum and extracellular calcium modulate induction of cytochrome P-450IA1 in human keratinocytes. J Biol Chem 265:21086–21090

    PubMed  CAS  Google Scholar 

  4. Bergstrom MA, Ott H, Carlsson A, Neis M, Zwadlo-Klarwasser G, Jonsson CA, Merk HF, Karlberg AT, Baron JM (2006) A skin-like cytochrome P450 cocktail activates prohaptens to contact allergenic metabolites. J Invest Dermatol 127(5):1145–1153 doi.10.1038/sj.jid.5700638

    Article  PubMed  Google Scholar 

  5. Bickers DR, Marcelo CL, Dutta-Choudhury T, Mukhtar H (1982) Studies on microsomal cytochrome P-450, monooxygenases and epoxide hydrolase in cultured keratinocytes and intact epidermis from BALB/C mice. J Pharmacol exp Ther 233:163–168

    Google Scholar 

  6. Bogaards JJ, Bertrand M, Jackson P, Oudshoorn MJ, Weaver RJ, van Bladeren PJ, Walther B (2000) Determining the best animal model for human cytochrome P450 activities: a comparison of mouse, rat, rabbit, dog, micropig, monkey and man. Xenobiotica 30:1131–1152

    Article  PubMed  CAS  Google Scholar 

  7. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  PubMed  CAS  Google Scholar 

  8. Bronaugh RL, Stewart RF, Congdon ER (1982) Methods for in vitro percutaneous absorption studies. II. Animal models for human skin. Toxicol Appl Pharmacol 62:481–488

    Article  PubMed  CAS  Google Scholar 

  9. Burke MD, Thompson S, Weaver RJ, Wolf CR, Mayer RT (1994) Cytochrome P450 specificities of alkoxyresorufin O-dealkylation in human and rat liver. Biochem Pharmacol 48:923–936

    Article  PubMed  CAS  Google Scholar 

  10. Cotovio j, Leclaire J, Rouget R (1997) Cytochrome P450-dependent enzyme activities in normal adult human keratinocytes and transformed human keratinocytes. In Vitro Toxicol 10:207–216

    Google Scholar 

  11. Delescluse C, Ledirac N, de Sousa G, Pralavorio M, Botta-Fridlund D, Letreut Y, Rahmani R (1997) Comparative study of CYP1A1 induction by 3-methylcholanthrene in various human hepatic and epidermal cell types. Toxic In Vitro 11:443–450

    Article  CAS  Google Scholar 

  12. Du L, Hoffman SMG, Keeney DS (2004) Epidermal CYP2 family cytochromes P450. Toxicol Appl Pharmacol 195:278–287

    Article  PubMed  CAS  Google Scholar 

  13. Du L, Neis MM, Ladd PA, Lanza DL, Yost GS, Keeney DS (2006) Effects of the differentiated keratinocyte phenotype on expression levels of CYP1-4 family genes in human skin cells. Toxicol Appl Pharmacol 213:135–144

    Article  PubMed  CAS  Google Scholar 

  14. Gervot L, Rochat B, Gautier JC, Bohnenstengel F, Kroemer H, de Berardinis V, Martin H, Beaune P, de Waziers I (1999) Human CYP2B6: expression, inducibility and catalytic activities. Pharmacogenetics 9(3):295–306

    Article  PubMed  CAS  Google Scholar 

  15. Gibson GG, Skett P (2001) Introduction to drug metabolism. Nelson Thornes, Cheltenham

    Google Scholar 

  16. Goerz G, Barnstorf W, Winnekendonk G, Bolsen K, Fritsch C, Kalka K, Tsambaos D (1996) Influence of UVA and UVB irradiation on hepatic and cutaneous P450 isoenzymes. Arch Dermatol Res 289:46–51

    Article  PubMed  CAS  Google Scholar 

  17. Guengerich FP (1997) Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species. Chem Biol Interact 106:161–182

    Article  PubMed  CAS  Google Scholar 

  18. Hotchkiss SA (1992) Skin as a xenobiotic metabolizing organ. In: Gibson GG (ed) Progress in drug metabolism. Taylor and Francis, London, pp 217–262

  19. Jugert FK, Agarwal R, Kuhn A, Bickers DR, Merk HF, Mukhtar H (1994) Multiple cytochrome P450 isozymes in Murine Skin: induction of P450 1A, 2B, 2E, and 3A by dexamethasone. J Invest Dermatol 102:970–975

    Article  PubMed  CAS  Google Scholar 

  20. Kao J, Patterson FK, Hall J (1985) Skin penetration and metabolism of topically applied chemicals in six mammalian species, including man: an in vitro study with benzo[a]pyrene and testosterone. Toxicol Appl Pharmacol 81:502–516

    Article  PubMed  CAS  Google Scholar 

  21. Madan A, Graham RA, Carroll KM, Mudra DR, Burton LA, Krueger LA, Downey AD, Czerwinski M, Forster J, Ribadeneira MD, Gan LS, LeCluyse EL, Zech K, Robertson P Jr, Koch P, Antonian L, Wagner G, Yu L, Parkinson A (2003) Effects of prototypical microsomal enzyme inducers on cytochrome P450 expression in cultured human hepatocytes. Drug Metab Dispos 31:421–431

    Article  PubMed  CAS  Google Scholar 

  22. Mahl JA, Vogel BE, Court M, Kolopp M, Roman D, Nogues V (2006) The minipig in dermatotoxicology: methods and challenges. Exp Toxicol Pathol 57(5–6):341–345

    Article  PubMed  Google Scholar 

  23. Meyer O, Svendsen O (2003) Animal models in pharmacology and toxicology. In: Hau J, Van Hoosier GL (eds) Volume II: animal models.handbook of laboratory animal science. CRC, Boca Raton, pp 11–41

    Google Scholar 

  24. Moloney SJ, Fromson JM, Bridges JW (1982) Cytochrome P-450 dependent deethylase activity in rat and hairless mouse skin microsomes. Biochem Pharmacol 31:4011–4018

    Article  PubMed  CAS  Google Scholar 

  25. Nelson DR, Zeldin DC, Hoffman SMG, Maltais LJ, Wain HM, Nebert DW (2004) Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14:1–18

    Article  PubMed  CAS  Google Scholar 

  26. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol chem 239:2370–2378

    PubMed  CAS  Google Scholar 

  27. Pohl RJ, Philpot RM, Fouts JR (1976) Cytochrome P-450 content and mixed-function oxidase activity in microsomes isolated from mouse skin. Drug Metab Dispos 4:442–450

    PubMed  CAS  Google Scholar 

  28. Qvist MH, Hoeck U, Kreilgaard B, Madsen F, Frokjaer S (2000) Evaluation of Gottingen minipig skin for transdermal in vitro permeation studies. Eur J Pharm Sci 11:59–68

    Article  PubMed  CAS  Google Scholar 

  29. Reiners JJ Jr, Cantu AR, Thai G, Scholler A (1992) Differential expression of basal and hydrocarbon-induced cytochrome P-450 monooxygenase and quinone reductase activities in subpopulations of murine epidermal cells differing in their stages of differentiation. Drug Metab Dispos 20:360–366

    PubMed  CAS  Google Scholar 

  30. Rettie AE, Williams FM, Rawlins MD, Mayer RT, Burke MD (1986) Major differences between lung, skin and liver in the microsomal metabolism of homologous series of resorufin and coumarin ethers. Biochem Pharmacol 35:3495–3500

    Article  PubMed  Google Scholar 

  31. Saeki M, Saito Y, Nagano M, Teshima R, Ozawa S, Sawada J (2002) mRNA expression of multiple cytochrome p450 isozymes in four types of cultured skin cells. Int Arch Allergy Immunol 127:333–336

    Article  PubMed  CAS  Google Scholar 

  32. Scott RC, Corrigan MA, Smith F, Mason H (1991) The influence of skin structure on permeability: an intersite and interspecies comparison with hydrophilic penetrants. J Invest Dermatol 96:921–925

    Article  PubMed  CAS  Google Scholar 

  33. Smith G, Ibbotson SH, Comrie MM, Dawe RS, Bryden A, Ferguson J, Wolf CR (2006) Regulation of cutaneous drug-metabolizing enzymes and cytoprotective gene expression by topical drugs in human skin in vivo. Br J Dermatol 155:275–281

    Article  PubMed  CAS  Google Scholar 

  34. Soucek P, Zuber R, Anzenbacherova E, Anzenbacher P, Guengerich FP (2001) Minipig cytochrome P450 3A, 2A and 2C enzymes have similar properties to human analogs. BMC Pharmacol 1:11

    Google Scholar 

  35. Steinsträsser I, Merkle HP (1995) Dermal metabolism of topically applied drugs: Pathways and models reconsidered. Pharm Acta Helv 70:3–24

    Article  PubMed  Google Scholar 

  36. Storm JE, Collier SW, Stewart RF, Bronaugh RL (1990) Metabolism of xenobiotics during percutaneous penetration: role of absorption rate and cutaneous enzyme activity. Fund Appl Pharmacol 15:132–141

    Article  CAS  Google Scholar 

  37. Yengi LG, Xiang Q, Pan J, Scatina J, Kao J, Ball SE, Fruncillo R, Ferron G, Roland WC (2003) Quantitation of cytochrome P450 mRNA levels in human skin. Anal Biochem 316:103–110

    Article  PubMed  CAS  Google Scholar 

  38. Yuan R, Madani S, Wei XX, Reynolds K, Huang SM (2002) Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab Dispos 30:1311–1319

    Article  PubMed  CAS  Google Scholar 

  39. Zhu Z, Hotchkiss SA, Boobis AR, Edwards RJ (2002) Expression of P450 enzymes in rat whole skin and cultured epidermal keratinocytes. Biochem Biophys Res Commun 297:65–70

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamilla Rolsted.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolsted, K., Kissmeyer, AM., Rist, G.M. et al. Evaluation of cytochrome P450 activity in vitro, using dermal and hepatic microsomes from four species and two keratinocyte cell lines in culture. Arch Dermatol Res 300, 11–18 (2008). https://doi.org/10.1007/s00403-007-0811-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-007-0811-4

Keywords

Navigation