Skip to main content

Advertisement

Log in

Inhibitory effect of the water-soluble polymer-wrapped derivative of fullerene on UVA-induced melanogenesis via downregulation of tyrosinase expression in human melanocytes and skin tissues

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

The C60-fullerene derivatives are expected, as novel and potent anti-oxidants, to more effectively protect skin cells against oxidative stress. UVA-induced oxidative stress is considered to promote melanogenesis and serious skin damage. The effect of any fullerene derivatives on UVA-induced melanogenesis is still unknown. Here, we evaluated effects of a water-soluble polyvinylpyrrolidone (PVP)-wrapped fullerene derivative (named “Radical Sponge®” because of its anti-oxidant ability) on melanogenesis, which was promoted by UVA-irradiation to human melanocytes and skin tissues. Radical Sponge® markedly scavenged UVA-induced reactive oxygen species (ROS) inside human melanocytes as shown by fluorometry using the redox indicator CDCFH-DA. After treatment with Radical Sponge® or other agents, human melanocytes and skin tissues were irradiated by UVA. Then, cellular melanin content, tyrosinase activity and the ultrastructural change of skin melanosomes were examined. Radical Sponge® showed to significantly inhibit UVA-promoted melanogenesis in normal human epidermis melanocytes (NHEM) and human melanoma HMV-II cells within a non-cytotoxicity dose range. As compared with two whitening agents, arbutin and l-ascorbic acid, Radical Sponge® demonstrated the stronger anti-melanogenic potential according to spectrophotometric quantification for extracted melanin. In human skin cultures also, UVA-promoted melanin contents were repressed by Radical Sponge® according to Fontana–Masson stain, suggesting its ability to repress UVA-induced tanning. Transmission electron microscopic ultrastructural images also proved that UVA-increased melanosomes in human skin tissue were obviously reduced by Radical Sponge®. The UVA-enhanced tyrosinase enzymatic activity in NHEM melanocytes was inhibited by Radical Sponge® more markedly than by arbutin and l-ascorbic acid. The UVA-enhanced tyrosinase protein expression, together with cell-size fatness and dendrite-formation, was also inhibited more markedly by Radical Sponge® according to immunostain and flow cytometry using anti-tyrosinase antibody. Thus the depigmentating action of Radical Sponge® might be due to its down-regulating effect on the tyrosinase expression, which is initiated by UVA-caused ROS generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agar N, Young AR (2005) Melanogenesis: a photoprotective response to DNA damage? Mutat Res 571:121–132

    PubMed  CAS  Google Scholar 

  2. Brown DA (2001) Skin pigmentation enhancers. J Photochem Photobiol B 63:148–161

    Article  PubMed  CAS  Google Scholar 

  3. Busca R, Ballotti R (2000) Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res 13:60–69

    Article  PubMed  CAS  Google Scholar 

  4. Cals-Grierson MM, Ormerod AD (2004) Nitric oxide function in the skin. Nitric Oxide 10:179–193

    Article  PubMed  CAS  Google Scholar 

  5. deOliveira AR, Castrucci AM, Visconti MA (1996) Cellular signalling in vertebrate pigment cells. Braz J Med Biol Res 29:1743–1749

    PubMed  CAS  Google Scholar 

  6. Dissanayake NS, Greenoak GE, Mason RS (1993) Effects of ultraviolet irradiation on human skin-derived epidermal cells in vitro. J Cell Physiol 157:119–127

    Article  PubMed  CAS  Google Scholar 

  7. Dugan LL, Gabrielsen JK, Yu SP, Lin TS, Choi DW (1996) Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis 3:129–135

    Article  PubMed  CAS  Google Scholar 

  8. Eller MS, Ostrom K, Gilchrest BA (1996) DNA damage enhances melanogenesis. Proc Natl Acad Sci USA 93:1087–1092

    Article  PubMed  CAS  Google Scholar 

  9. Fujiwara Y, Sahashi Y, Aritro M, Hasegawa S, Akimoto K, Ninomiya S, Sakaguchi Y, Seyama Y (2004) Effect of simultaneous administration of vitamin C, L-cysteine and vitamin E on the melanogenesis. Biofactors 21:415–418

    PubMed  CAS  Google Scholar 

  10. Gao D, Luo Y, Guevara D, Wang Y, Rui M, Goldwyn B, Lu Y, Smith EC, Lebwohl M, Wei H (2005) Benzo[a]pyrene and its metabolites combined with ultraviolet a synergistically induce 8-hydroxy-2′-deoxyguanosine via reactive oxygen species. Free Radic Biol Med 39:1177–1183

    Article  PubMed  CAS  Google Scholar 

  11. Gilchrest BA, Park HY, Eller MS, Yaar M (1996) Mechanisms of ultraviolet light-induced pigmentation. Photochem Photobiol 63:1–10

    PubMed  CAS  Google Scholar 

  12. Halliday GM (2005) Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutat Res 571:107–120

    PubMed  CAS  Google Scholar 

  13. Hearing VJ, Tsukamoto K (1991) Enzymatic control of pigmentation in mammals. FASEB J 5:2902–2909

    PubMed  CAS  Google Scholar 

  14. Ishiyama M, Tominaga H, Shiga M, Sasamoto K, Ohkura Y, Ueno K (1996) A combined assay of cell viability and in vitro cytotoxicity with a highly water-soluble tetrazolium salt, neutral red and crystal violet. Biol Pharm Bull 19:1518–1520

    PubMed  CAS  Google Scholar 

  15. Krusic PJ, Wasserman E, Keizer PN, Morton JR, Preston KF (1991) Radical reaction of C60. Science 254:1183–1185

    Article  CAS  PubMed  Google Scholar 

  16. Lassalle MW, Igarashi S, Sasaki M, Wakamatsu K, Ito S, Horikoshi T (2003) Effects of melanogenesis-inducing nitric oxide and histamine on the production of eumelanin and pheomelanin in cultured human melanocytes. Pigment Cell Res 16:81–84

    Article  PubMed  CAS  Google Scholar 

  17. Maeda K, Fukuda M (1996) Arbutin: mechanism of its depigmenting action in human melanocyte culture. J Pharmacol Exp Ther 276:765–769

    PubMed  CAS  Google Scholar 

  18. Maeda K, Hatao M (2004) Involvement of photooxidation of melanogenic precursors in prolonged pigmentation induced by ultraviolet A. J Invest Dermatol 122:503–509

    Article  PubMed  CAS  Google Scholar 

  19. Matsui MS, Wang N, MacFarlane D, DeLeo VA (1994) Long-wave ultraviolet radiation induces protein kinase C in normal human keratinocytes. Photochem Photobiol 59:53–57

    PubMed  CAS  Google Scholar 

  20. McEwen CN, McKay RG, Larsen BS (1992) C60 as a radical sponge. J Am Chem Soc 114:4412–4414

    Article  CAS  Google Scholar 

  21. Mori T, Takada H, Ito S, Matsubayashi K, Miwa N, Sawaguchi T (2006) Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology 225:48–54

    PubMed  CAS  Google Scholar 

  22. Moyal D (2004) Prevention of ultraviolet-induced skin pigmentation. Photodermatol Photoimmunol Photomed 20:243–247

    Article  PubMed  CAS  Google Scholar 

  23. Nakamura T, Seki S, Matsubara O, Ito S, Kasuga T (1988) Specific incorporation of 4-S-cysteinylphenol into human melanoma cells. J Invest Dermatol 90:725–728

    Article  PubMed  CAS  Google Scholar 

  24. Nakamura Y, Torikai K, Ohto Y, Murakami A, Tanaka T, Ohigashi H (2000) A simple phenolic anti-oxidant protocatechuic acid enhances tumor promotion and oxidative stress in female ICR mouse skin: dose-and timing-dependent enhancement and involvement of bioactivation by tyrosinase. Carcinogenesis 10:1899–1907

    Article  Google Scholar 

  25. O’Donovan P, Perrett CM, Zhang X, Montaner B, Xu YZ, Harwood CA, McGregor JM, Walker SL, Hanaoka F, Karran P (2005) Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science 309:1871–1874

    Article  PubMed  CAS  Google Scholar 

  26. Park HY, Gilchrest BA (1993) Protein kinase C: biochemical characteristics and role in melanocyte biology. J Dermatol Sci 6:185–193

    Article  PubMed  CAS  Google Scholar 

  27. Park HY, Wu H, Killoran CE, Gilchrest BA (2004) The receptor for activated C-kinase-I (RACK-I) anchors activated PKC-beta on melanosomes. J Cell Sci 117:3659–3668

    Article  PubMed  CAS  Google Scholar 

  28. Quevedo WC Jr, Holstein TJ, Dyckman J, McDonald CJ, Isaacson EL (2000) Inhibition of UVR-induced tanning and immunosuppression by topical applications of vitamins C and E to the skin of hairless (hr/hr) mice. Pigment Cell Res 13:89–98

    Article  PubMed  CAS  Google Scholar 

  29. Ramirez-Bosca A, Bernd A, Werner R, Dold K, Holzmann H (1992) Effect of the dose of ultraviolet radiation on the pigment formation by human melanocytes in vitro. Arch Dermatol Res 284:358–362

    Article  PubMed  CAS  Google Scholar 

  30. Romero-Graillet C, Aberdam E, Biagoli N, Massabni W, Ortonne JP, Ballotti R (1996) Ultraviolet B radiation acts through the nitric oxide and cGMP signal transduction pathway to stimulate melanogenesis in human melanocytes. J Biol Chem 271:28052–28056

    Article  PubMed  CAS  Google Scholar 

  31. Romero-Graillet C, Aberdam E, Clement M, Ortonne JP, Ballotti R (1997) Nitric oxide produced by ultraviolet-irradiated keratinocytes stimulates melanogenesis. J Clin Invest 99:635–642

    Article  PubMed  CAS  Google Scholar 

  32. Sakurai H, Yasui H, Yamada Y, Nishimura H, Shigemoto M (2005) Detection of reactive oxygen species in the skin of live mice and rats exposed to UVA light: a research review on chemiluminescence and trials for UVA protection. Photochem Photobiol Sci 4:715–720

    Article  PubMed  CAS  Google Scholar 

  33. Sasaki M, Horikoshi T, Uchiwa H, Miyachi Y (2000) Up-regulation of tyrosinase gene by nitric oxide in human melanocytes. Pigment Cell Res 13:248–252

    Article  PubMed  CAS  Google Scholar 

  34. Sasaki M, Kizawa K, Igarashi S, Horikoshi T, Uchiwa H, Miyachi Y (2004) Suppression of melanogenesis by induction of endogenous intracellular metallothionein in human melanocytes. Exp Dermatol 13:465–471

    Article  PubMed  CAS  Google Scholar 

  35. Sowden HM, Naseem KM, Tobin DJ (2005) Differential expression of nitric oxide syntheses in human scalp epidermal and hair follicle pigmentary units: implications for regulation of melanogenesis. Br J Dermatol 153(2):301–309

    Article  PubMed  CAS  Google Scholar 

  36. Sturm RA, Teasdale RD, Box NF (2001) Human pigmentation genes: identification, structure and consequences of polymorphic variation. Gene 277:49–62

    Article  PubMed  CAS  Google Scholar 

  37. Suschek CV, Paunel A, Kolb-Bachofen V (2005) Non-enzymatic nitric oxide formation during UVA irradiation of human skin: experimental setups and ways to measure. Methods Enzymol 396:568–578

    PubMed  CAS  Google Scholar 

  38. Szejda P, Parce JW, Seeds MS, Bass DA (1984) Flow cytometric quantitation of oxidative product formation by polymorphonuclear leukocytes during phagocytosis. J Immunol 133:3303–3307

    PubMed  CAS  Google Scholar 

  39. Tada A, Suzuki I, Im S, Davis MB, Cornelius J, Babcock G, Nordlund JJ, Abdel-Malek ZA (1998) Endothelin-1 is a paracrine growth factor that modulates melanogenesis of human melanocytes and participates in their responses to ultraviolet radiation. Cell Growth Differ 9:575–584

    PubMed  CAS  Google Scholar 

  40. Tsatmali M, Ancans J, Thody AJ (2002) Melanocyte function and its control by melanocortin peptides. J Histochem Cytochem 50:125–133

    PubMed  CAS  Google Scholar 

  41. Weller R (2003) Nitric oxide: a key mediator in cutaneous physiology. Clin Exp Dermatol 28:511–514

    Article  PubMed  CAS  Google Scholar 

  42. Xiao L, Takada H, Maeda K, Haramoto M, Miwa N (2005) Anti-oxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed Pharmacother 59:351–358

    Article  PubMed  CAS  Google Scholar 

  43. Xiao L, Takada H, Gan XH, Miwa N (2006) The water-soluble fullerene derivative “Radical Sponge®“ exerts cytoprotective action against UVA irradiation but not visible-light-catalyzed cytotoxicity in human skin keratinocytes. Bioorg Med Chem Lett 16:1590–1595

    Article  PubMed  CAS  Google Scholar 

  44. Yanase H, Ando H, Horikawa M, Watanabe M, Mori T, Matsuda N (2001) Possible involvement of ERK 1/2 in UVA-induced melanogenesis in cultured normal human epidermal melanocytes. Pigment Cell Res 14:103–109

    Article  PubMed  CAS  Google Scholar 

  45. Yeun-Ja MUN, Sung-Won LEE, Hyun-Woo JEONG, Kwang-Gyu LEE, Joung-Hoon KIM, Won-Hong WOO (2004) Inhibitory effect of miconazole on melanogenesis. Biol Pharm Bull 27:806–809

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Hiroya Takada, Ms. Akiko Tamagawa, and Mr. Koji Tani for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiko Miwa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, L., Matsubayashi, K. & Miwa, N. Inhibitory effect of the water-soluble polymer-wrapped derivative of fullerene on UVA-induced melanogenesis via downregulation of tyrosinase expression in human melanocytes and skin tissues. Arch Dermatol Res 299, 245–257 (2007). https://doi.org/10.1007/s00403-007-0740-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-007-0740-2

Keywords

Navigation