Skip to main content

Advertisement

Log in

Ultraviolet A1 phototherapy decreases inhibitory SMAD7 gene expression in localized scleroderma

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Localized scleroderma (LS) is a connective skin disease with marked sclerosis of the skin as the most prominent feature. Transforming growth factor beta (TGF-β) plays a central role in the pathogenesis of sclerotic skin diseases. Recently, special attention was contributed to a family of transcription factor proteins involved in TGF-β signal transduction from cell surface to the nucleus, the so-called SMADs. Ultraviolet (UV) irradiation has been reported to alter TGF-β/SMAD pathway in human skin. We sought to investigate the effects of UVA1 on the gene and protein expressions of the TGF-β/SMAD pathway in LS. UVA1 phototherapy was performed in eight LS patients five times weekly for 8 weeks resulting in a total of 40 treatment sessions (single dose 50 J/cm2, cumulative dose 2,000 J/cm2). TGF-β1, SMAD3, SMAD4, and SMAD7 mRNA expressions were determined by semiquantitative real-time reverse transcription polymerase chain reaction in lesional and unaffected skin of patients with LS. Additionally, immunohistochemical staining was performed in lesional skin before and after irradiation. Skin status markedly improved in all patients, resulting in a significant reduction of the clinical score from baseline to the end of treatment. Inhibitory SMAD7 mRNA was significantly higher in lesional skin as compared to unaffected skin, and significantly decreased after UVA1 phototherapy. In contrast, SMAD7 mRNA levels remained unchanged in irradiated, healthy skin after UVA1. Both TGF-β and SMAD3 mRNA levels decreased after UVA1, whereas SMAD4 mRNA increased. However, changes in TGF-β, SMAD3, and SMAD4 mRNA after UVA1 did not reach statistical significance. Immunohistochemical investigation did not reveal significant changes in the protein expression of SMADs after UVA1. Similar to scleroderma, SMAD7-mediated negative regulation seems to be impaired in LS. UVA1 phototherapy demonstrated the alteration of SMAD7 gene expression in LS, as SMAD7 mRNA levels normalized after UVA1. The pathogenetic relevance of SMAD7 levels with respect to clinical improvement needs further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K (2004) Impaired SMAD7-Smurf-mediated negative regulation of TGF-β signaling in scleroderma fibroblasts. J Clin Investig 113:253–264

    Article  PubMed  CAS  Google Scholar 

  2. Cotton SA, Herrick AL, Jayson MI, Freemont AJ (1998) Endothelial expression of nitric oxide synthases and nitrotyrosine in systemic sclerosis skin. J Pathol 184:4–6

    Article  PubMed  CAS  Google Scholar 

  3. Derynck R, Zhang Y, Feng XH (1998) SMADs: transcriptional activators of TGF-β responses. Cell 95:737–740

    Article  PubMed  CAS  Google Scholar 

  4. Dong C, Zhu S, Wang T et al (2002) Deficient SMAD7 expression: a putative molecular defect in scleroderma. Proc Natl Acad Sci USA 99:3908–3913

    Article  PubMed  CAS  Google Scholar 

  5. Holmes A, Abraham DJ, Sa S, Shiwen X, Black CM, Leask A (2001) CTGF and SMADs, maintenance of scleroderma phenotype is independent of SMAD signaling. J Biol Chem 276:10594–10601

    Article  PubMed  CAS  Google Scholar 

  6. Ihn H, Yamane K, Kubo M, Tamaki K (2001) Blockade of endogenous transforming growth factor β signaling prevents up-regulated collagen synthesis in scleroderma fibroblasts: association with increased expression of transforming growth factor β receptors. Arthritis Rheum 44:474–480

    Article  PubMed  CAS  Google Scholar 

  7. Ishida W, Mori Y, Lakos G et al (2006) Intracellular tgf-beta receptor blockade abrogates SMAD-dependent fibroblast activation in vitro and in vivo. J Investig Dermatol 126:1733–1744

    Article  PubMed  CAS  Google Scholar 

  8. Kawakami T, Ihn H, Xu W, Smith E, LeRoy C, Trojanowska M (1998) Increased expression of TGF-beta receptors by scleroderma fibroblasts: evidence for contribution of autocrine TGF-beta signaling to scleroderma phenotype. J Investig Dermatol 110:47–51

    Article  PubMed  CAS  Google Scholar 

  9. Kerscher M, Volkenandt M, Meurer M et al (1994) Treatment of localised scleroderma with PUVA bath photochemotherapy. Lancet 343:1233

    Article  PubMed  CAS  Google Scholar 

  10. Kreuter A, Gambicher T, Avermaete A et al (2001) Combined treatment with calcipotriol ointment and low-dose ultraviolet A1 phototherapy in childhood morphea. Pediatr Dermatol 18:241–245

    Article  PubMed  CAS  Google Scholar 

  11. Kreuter A, Hyun J, Stücker M, Sommer A, Altmeyer P, Gambichler T (2006) An open randomised controlled study of low-dose UVA1, medium-dose UVA1, and narrow-band UVB phototherapy in the treatment of localized scleroderma. J Am Acad Dermatol 54:440–447

    Article  PubMed  Google Scholar 

  12. Kubo M, Ihn H, Yamane K, Tamaki K (2001) Up-regulated expression of transforming growth factor β receptors in dermal fibroblasts in skin sections of patients with localized scleroderma. Arthritis Rheum 44:731–734

    Article  PubMed  CAS  Google Scholar 

  13. LeRoy EC (1992) A brief overview of the pathogenesis of scleroderma (systemic sclerosis). Ann Rheum Dis 51:286–288

    Article  PubMed  CAS  Google Scholar 

  14. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  15. Massaque J (1998) TGF-β signal transduction. Annu Rev Biochem 67:753–791

    Article  Google Scholar 

  16. Mori Y, Chen SJ, Varga J (2003) Expression and regulation of intracellular SMAD signaling in scleroderma skin fibroblasts. Arthritis Rheum 48:1964–1978

    Article  PubMed  CAS  Google Scholar 

  17. Peterson LS, Nelson AM, Su WP (1995) Classification of morphea (localized scleroderma). Mayo Clin Proc 70:1068–1076

    Article  PubMed  CAS  Google Scholar 

  18. Piek E, Heldin CH, ten Dijke P (1999) Specificity, diversity, and regulation in TGF-β superfamily signaling. FASEB J 13:2105–2124

    PubMed  CAS  Google Scholar 

  19. Quan T, He T, Voorhees JJ, Fisher GJ (2001) Ultraviolet irradiation blocks cellular responses to transforming growth factor-β by down-regulating its type-II receptor and inducing SMAD7. J Biol Chem 276:26349–26356

    Article  PubMed  CAS  Google Scholar 

  20. Quan T, He TY, Kang S, Voorhees JJ, Fisher GJ (2002) Ultraviolet irradiation alters transforming growth factor β/SMAD pathway in human skin in vivo. J Investig Dermatol 119:499–506

    Article  PubMed  CAS  Google Scholar 

  21. Seyger MMB, van den Hoogen FHJ, de Boo T, de Jong EMGJ (1998) Low-dose methotrexate in the treatment of widespread morphea. J Am Acad Dermatol 39:220–225

    Article  PubMed  CAS  Google Scholar 

  22. Stege H, Berneburg M, Humke S et al (1997) High-dose UVA1 radiation therapy for localized scleroderma. J Am Acad Dermatol 36:938–944

    Article  PubMed  CAS  Google Scholar 

  23. Takeda K, Hatamochi A, Ueki H, Nakata M, Oishi Y (1994) Decreased collagenase expression in cultured systemic sclerosis fibroblasts. J Investig Dermatol 103:359–363

    Article  PubMed  CAS  Google Scholar 

  24. Ten Dijke P, Hansen P, Iwata KK, Pieler C, Foulkes JG (1988) Identification of another member of the transforming growth factor type β gene family. Proc Natl Acad Sci USA 85:4715–4719

    Article  PubMed  CAS  Google Scholar 

  25. Varga J (2002) Scleroderma and SMADs. Dysfunctional SMAD family dynamics culminating in fibrosis. Arthritis Rheum 46:1703–1713

    Article  PubMed  CAS  Google Scholar 

  26. Yu H, Bock O, Bayat A, Ferguson MW, Morowietz U (2006) Decreased expression of inhibitory SMAD6 and SMAD7 in keloid scarring. J Plast Reconstr Aesthet Surg 59:221–229

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Barbara Panz for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kreuter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreuter, A., Hyun, J., Skrygan, M. et al. Ultraviolet A1 phototherapy decreases inhibitory SMAD7 gene expression in localized scleroderma. Arch Dermatol Res 298, 265–272 (2006). https://doi.org/10.1007/s00403-006-0695-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-006-0695-8

Keywords

Navigation