Skip to main content
Log in

Robotic-assisted knee arthroplasty: an evolution in progress. A concise review of the available systems and the data supporting them

  • Knee Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

A review of the data supporting robotic systems currently available is presented focussing on precision and reproducibility, radiological outcomes, clinical outcomes, and survivorship.

Materials and methods

Scientific literature published on robotic systems for knee arthroplasty was reviewed using the reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Inclusion criteria were any study involving robotic-assisted UKA or TKA that reported precision of implant positioning or functional outcomes or range of motion or survivorship, including cadaveric or dry bone studies with a minimum of 6-month follow-up.

Results

Thirty-nine studies were identified for robotic-assisted unicompartmental knee arthroplasty, and 24 studies for robotic-assisted total knee arthroplasty. Those that reported on radiological outcomes or cadaver studies consistently demonstrated improved precision with the use of robotic systems irrespective of the system. PROMS and survival data demonstrated equivalent short-term results. However, many studies reported outcomes inconsistently and few had long-term clinical follow-up or survivorship data.

Conclusions

This review adds to the body of evidence supporting improved precision and reproducibility with robotic assistance in knee arthroplasty. Despite intensive funding of research into robotic knee systems, there remains considerable heterogeneity in exposure and outcome analysis and few quality long-term studies demonstrating translation to better clinical outcomes and implant survivorship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adriani M, Malahias M, Kahlenberg A-G, Kahlenberg CA, Ast MP, Sculco PK (2020) Determining the validity, reliability, and utility of the forgotten joint score: a systematic review. J Arthroplasty 35(4):1137–1144. https://doi.org/10.1016/j.arth.2019.10.058 (Epub 2019 Nov 5. PMID: 31806559)

    Article  PubMed  Google Scholar 

  2. Batailler C, Fernandez A, Swan J, Servien E, Haddad FS, Catani F et al (2020) MAKO CT-based robotic arm-assisted system is a reliable procedure for total knee arthroplasty: a systematic review. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-020-06283-z

    Article  PubMed  Google Scholar 

  3. Batailler C, White N, Ranaldi FM, Neyret P, Servien E, Lustig S (2019) Improved implant position and lower revision rate with robotic-assisted unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 27:1232–1240

    PubMed  Google Scholar 

  4. Battenberg AK, Netravali NA, Lonner JH (2020) A novel handheld robotic-assisted system for unicompartmental knee arthroplasty: surgical technique and early survivorship. J Robot Surg 14:55–60

    PubMed  Google Scholar 

  5. Bell SW, Anthony I, Jones B, MacLean A, Rowe P, Blyth M (2016) Improved accuracy of component positioning with robotic-assisted unicompartmental knee arthroplasty: data from a prospective, randomized controlled study. J Bone Joint Surg Am 98:627–635

    PubMed  Google Scholar 

  6. Blyth MJG, Anthony I, Rowe P, Banger MS, MacLean A, Jones B (2017) Robotic arm-assisted versus conventional unicompartmental knee arthroplasty: exploratory secondary analysis of a randomised controlled trial. Bone Joint Res 6:631–639

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bollars P, Boeckxstaens A, Mievis J, Kalaai S, Schotanus MGM, Janssen D (2020) Preliminary experience with an image-free handheld robot for total knee arthroplasty: 77 cases compared with a matched control group. Eur J Orthop Surg Traumatol 30:723–729

    CAS  PubMed  Google Scholar 

  8. Burger JA, Kleeblad LJ, Laas N, Pearle AD (2020) Mid-term survivorship and patient-reported outcomes of robotic-arm assisted partial knee arthroplasty. Bone Joint J 102-B:108–116

    PubMed  Google Scholar 

  9. Burger JA, Kleeblad LJ, Sierevelt IN, Horstmann WG, van Geenen RCI, van Steenbergen LN et al (2020) A comprehensive evaluation of lateral unicompartmental knee arthroplasty short to mid-term survivorship, and the effect of patient and implant characteristics: an analysis of data from the Dutch arthroplasty register. J Arthroplasty 35:1813–1818

    PubMed  Google Scholar 

  10. Calliess T, Ettinger M, Savov P, Karkosch R, Windhagen H (2018) Individualized alignment in total knee arthroplasty using image-based robotic assistance: video article. Orthopade 47:871–879

    PubMed  PubMed Central  Google Scholar 

  11. Canetti R, Batailler C, Bankhead C, Neyret P, Servien E, Lustig S (2018) Faster return to sport after robotic-assisted lateral unicompartmental knee arthroplasty: a comparative study. Arch Orthop Trauma Surg 138:1765–1771

    CAS  PubMed  Google Scholar 

  12. Casper M, Mitra R, Khare R, Jaramaz B, Hamlin B, McGinley B et al (2018) Accuracy assessment of a novel image-free handheld robot for Total Knee Arthroplasty in a cadaveric study. Comput Assist Surg (Abingdon) 23:14–20

    Google Scholar 

  13. Chawla H, Ghomrawi HM, van der List JP, Eggman AA, Zuiderbaan HA, Pearle AD (2017) Establishing age-specific cost-effective annual revision rates for unicompartmental knee arthroplasty: a meta-analysis. J Arthroplasty 32:326–335

    PubMed  Google Scholar 

  14. Chen KK, Kim KY, Vigdorchik JM, Meere PA, Bosco JA, Iorio R (2019) Cost-effectiveness analysis of robotic arthroplasty—book chapter. In: Lonner J (ed) Robotics in knee and hip arthroplasty. Springer, Cham. https://doi.org/10.1007/978-3-030-16593-2_7

    Chapter  Google Scholar 

  15. Cho KJ, Seon JK, Jang WY, Park CG, Song EK (2019) Robotic versus conventional primary total knee arthroplasty: clinical and radiological long-term results with a minimum follow-up of ten years. Int Orthop 43:1345–1354

    PubMed  Google Scholar 

  16. Citak M, Suero EM, Citak M, Dunbar NJ, Branch SH, Conditt MA et al (2013) Unicompartmental knee arthroplasty: is robotic technology more accurate than conventional technique? Knee 20:268–271

    PubMed  Google Scholar 

  17. Clark TC, Schmidt FH (2013) Robot-assisted navigation versus computer-assisted navigation in primary total knee arthroplasty: efficiency and accuracy. ISRN Orthop. https://doi.org/10.1155/2013/794827

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cobb J, Henckel J, Gomes P, Harris S, Jakopec M, Rodriguez F et al (2006) Hands-on robotic unicompartmental knee replacement: a prospective, randomised controlled study of the acrobot system. J Bone Joint Surg Br 88:188–197

    CAS  PubMed  Google Scholar 

  19. Collins K, Agius PA, Fraval A, Petterwood J (2021) Initial experience with the NAVIO robotic-assisted total knee replacement-coronal alignment accuracy and the learning curve. J Knee Surg. https://doi.org/10.1055/s-0040-1722693

    Article  PubMed  Google Scholar 

  20. Deese JM, Gratto-Cox G, Carter DA, Sasser TM Jr, Brown KL (2018) Patient reported and clinical outcomes of robotic-arm assisted unicondylar knee arthroplasty: minimum two year follow-up. J Orthop 15:847–853

    PubMed  PubMed Central  Google Scholar 

  21. Dretakis K, Igoumenou VG (2019) Outcomes of robotic-arm-assisted medial unicompartmental knee arthroplasty: minimum 3 year follow-up. Eur J Orthop Surg Traumatol 29:1305–1311

    PubMed  Google Scholar 

  22. Dunbar NJ, Roche MW, Park BH, Branch SH, Conditt MA, Banks SA (2012) Accuracy of dynamic tactile-guided unicompartmental knee arthroplasty. J Arthroplasty 27:803-808 e801

    PubMed  Google Scholar 

  23. Ettinger M, Tucking LR, Savov P (2020) Kinematic alignment in total knee arthroplasty with image-based and image-independent robotic support. Orthopade 49:604–610

    CAS  PubMed  Google Scholar 

  24. Figueroa F, Wakelin E, Twiggs J, Fritsch B (2019) Comparison between navigated reported position and postoperative computed tomography to evaluate accuracy in a robotic navigation system in total knee arthroplasty. Knee 26:869–875

    PubMed  Google Scholar 

  25. Gaudiani MA, Nwachukwu BU, Baviskar JV, Sharma M, Ranawat AS (2017) Optimization of sagittal and coronal planes with robotic-assisted unicompartmental knee arthroplasty. Knee 24:837–843

    PubMed  Google Scholar 

  26. Gilmour A, MacLean AD, Rowe PJ, Banger MS, Donnelly I, Jones BG et al (2018) Robotic-arm-assisted vs conventional unicompartmental knee arthroplasty. The 2 year clinical outcomes of a randomized controlled trial. J Arthroplasty 33:S109–S115

    PubMed  Google Scholar 

  27. Gladnick BP, Nam D, Khamaisy S, Paul S, Pearle AD (2015) Onlay tibial implants appear to provide superior clinical results in robotic unicompartmental knee arthroplasty. HSS J 11:43–49

    PubMed  Google Scholar 

  28. Hampp EL, Chughtai M, Scholl LY, Sodhi N, Bhowmik-Stoker M, Jacofsky DJ et al (2019) Robotic-arm assisted total knee arthroplasty demonstrated greater accuracy and precision to plan compared with manual techniques. J Knee Surg 32:239–250

    PubMed  Google Scholar 

  29. Hampp EL, Sodhi N, Scholl L, Deren ME, Yenna Z, Westrich G et al (2019) Less iatrogenic soft-tissue damage utilizing robotic-assisted total knee arthroplasty when compared with a manual approach: a blinded assessment. Bone Joint Res 8:495–501

    PubMed  PubMed Central  Google Scholar 

  30. Hansen DC, Kusuma SK, Palmer RM, Harris KB (2014) Robotic guidance does not improve component position or short-term outcome in medial unicompartmental knee arthroplasty. J Arthroplasty 29:1784–1789

    PubMed  Google Scholar 

  31. Herry Y, Batailler C, Lording T, Servien E, Neyret P, Lustig S (2017) Improved joint-line restitution in unicompartmental knee arthroplasty using a robotic-assisted surgical technique. Int Orthop 41:2265–2271

    PubMed  Google Scholar 

  32. https://canarymedical.com (2021)

  33. Jakopec M, Harris SJ, Baena FR, Gomes P, Cobb J, Davies BL (2001) The first clinical application of a “hands-on” robotic knee surgery system. Comput Aided Surg 6:329–339

    CAS  PubMed  Google Scholar 

  34. Jaramaz B, Nikou C (2012) Precision freehand sculpting for unicondylar knee replacement: design and experimental validation. Biomed Tech (Berl) 57:293–299

    Google Scholar 

  35. Jeon SW, Kim KI, Song SJ (2019) Robot-assisted total knee arthroplasty does not improve long-term clinical and radiologic outcomes. J Arthroplasty 34:1656–1661

    PubMed  Google Scholar 

  36. Jess H, Lonner YAF (2018) Pros and cons: a balanced view of robotics in knee arthroplasty. J Arthroplasty 33:2007–2013

    Google Scholar 

  37. Kayani B, Konan S, Ayuob A, Onochie E, Al-Jabri T, Haddad FS (2019) Robotic technology in total knee arthroplasty: a systematic review. EFORT Open Rev 4:611–617

    PubMed  PubMed Central  Google Scholar 

  38. Kayani B, Konan S, Huq SS, Tahmassebi J, Haddad FS (2019) Robotic-arm assisted total knee arthroplasty has a learning curve of seven cases for integration into the surgical workflow but no learning curve effect for accuracy of implant positioning. Knee Surg Sports Traumatol Arthrosc 27:1132–1141

    PubMed  Google Scholar 

  39. Kayani B, Konan S, Pietrzak JRT, Haddad FS (2018) Iatrogenic bone and soft tissue trauma in robotic-arm assisted total knee arthroplasty compared with conventional jig-based total knee arthroplasty: a prospective cohort study and validation of a new classification system. J Arthroplasty 33:2496–2501

    PubMed  Google Scholar 

  40. Khamaisy S, Zuiderbaan HA, van der List JP, Nam D, Pearle AD (2016) Medial unicompartmental knee arthroplasty improves congruence and restores joint space width of the lateral compartment. Knee 23:501–505

    PubMed  Google Scholar 

  41. Khlopas A, Chughtai M, Hampp EL, Scholl LY, Prieto M, Chang TC et al (2017) Robotic-arm assisted total knee arthroplasty demonstrated soft tissue protection. Surg Technol Int 30:441–446

    PubMed  Google Scholar 

  42. Kim YH, Yoon SH, Park JW (2020) Does robotic-assisted TKA result in better outcome scores or long-term survivorship than conventional TKA? a randomized, controlled trial. Clin Orthop Relat Res 478:266–275

    PubMed  Google Scholar 

  43. Klasan A, Carter M, Holland S, Young SW (2020) Low femoral component prominence negatively influences early revision rate in robotic unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 28:3906–3911

    PubMed  Google Scholar 

  44. Kleeblad LJ, Borus TA, Coon TM, Dounchis J, Nguyen JT, Pearle AD (2018) Midterm survivorship and patient satisfaction of robotic-arm-assisted medial unicompartmental knee arthroplasty: a multicenter study. J Arthroplasty 33:1719–1726

    PubMed  Google Scholar 

  45. Kleeblad LJ, van der List JP, Pearle AD, Fragomen AT, Rozbruch SR (2018) Predicting the feasibility of correcting mechanical axis in large Varus deformities with unicompartmental knee arthroplasty. J Arthroplasty 33:372–378

    PubMed  Google Scholar 

  46. Kleeblad LJ, van der List JP, Zuiderbaan HA, Pearle AD (2017) Regional femoral and tibial radiolucency in cemented unicompartmental knee arthroplasty and the relationship to functional outcomes. J Arthroplasty 32:3345–3351

    PubMed  Google Scholar 

  47. Koulalis D, O’Loughlin PF, Plaskos C, Kendoff D, Cross MB, Pearle AD (2011) Sequential versus automated cutting guides in computer-assisted total knee arthroplasty. Knee 18:436–442

    PubMed  Google Scholar 

  48. Koulalis D, O’Loughlin PF, Plaskos C, Kendoff D, Pearle AD (2010) Adjustable cutting blocks for computer-navigated total knee arthroplasty: a cadaver study. J Arthroplasty 25:807–811

    PubMed  Google Scholar 

  49. Leelasestaporn C, Tarnpichprasert T, Arirachakaran A, Kongtharvonskul J (2020) Comparison of 1 year outcomes between MAKO versus NAVIO robot-assisted medial UKA: nonrandomized, prospective, comparative study. Knee Surg Relat Res 32:13

    PubMed  PubMed Central  Google Scholar 

  50. Lonner JH, John TK, Conditt MA (2010) Robotic arm-assisted UKA improves tibial component alignment: a pilot study. Clin Orthop Relat Res 468:141–146

    PubMed  Google Scholar 

  51. MacCallum KP, Danoff JR, Geller JA (2016) Tibial baseplate positioning in robotic-assisted and conventional unicompartmental knee arthroplasty. Eur J Orthop Surg Traumatol 26:93–98

    PubMed  Google Scholar 

  52. Mahoney O, Kinsey T, Sodhi N, Mont MA, Chen AF, Orozco F et al (2020) Improved component placement accuracy with robotic-arm assisted total knee arthroplasty. J Knee Surg. https://doi.org/10.1055/s-0040-1715571

    Article  PubMed  Google Scholar 

  53. Malchau H, Graves SE, Porter M, Harris WH, Troelsen A (2015) The next critical role of orthopedic registries. Acta Orthop 86:3–4

    PubMed  PubMed Central  Google Scholar 

  54. Malkani AL, Roche MW, Kolisek FR, Gustke KA, Hozack WJ, Sodhi N et al (2020) New technology for total knee arthroplasty provides excellent patient-reported outcomes: a minimum two-year analysis. Surg Technol Int 36:276–280

    PubMed  Google Scholar 

  55. Manning W, Ghosh M, Wilson I, Hide G, Longstaff L, Deehan D (2020) Improved mediolateral load distribution without adverse laxity pattern in robot-assisted knee arthroplasty compared to a standard manual measured resection technique. Knee Surg Sports Traumatol Arthrosc 28:2835–2845

    PubMed  Google Scholar 

  56. Marchand RC, Sodhi N, Anis HK, Ehiorobo J, Newman JM, Taylor K et al (2019) One-year patient outcomes for robotic-arm-assisted versus manual total knee arthroplasty. J Knee Surg 32:1063–1068

    PubMed  Google Scholar 

  57. Marchand RC, Sodhi N, Khlopas A, Sultan AA, Harwin SF, Malkani AL et al (2017) Patient satisfaction outcomes after robotic arm-assisted total knee arthroplasty: a short-term evaluation. J Knee Surg 30:849–853

    PubMed  Google Scholar 

  58. Martín-Hernández C, Sanz-Sainz M, Revenga-Giertych C, Hernández-Vaquero D, Fernández-Carreira JM, Albareda-Albareda J, Castillo-Palacios A, Ranera-Garcia M (2018) Navigated versus conventional total knee arthroplasty: a prospective study at three years follow-up. Rev Esp Cir Ortop Traumatol 62(4):282–292. https://doi.org/10.1016/j.recot.2018.01.001 (Epub ahead of print. PMID: 29605558)

    Article  Google Scholar 

  59. Mergenthaler G, Batailler C, Lording T, Servien E, Lustig S (2021) Is robotic-assisted unicompartmental knee arthroplasty a safe procedure? A case control study. Knee Surg Sports Traumatol Arthrosc 29:931–938

    PubMed  Google Scholar 

  60. Mofidi A, Plate JF, Lu B, Conditt MA, Lang JE, Poehling GG et al (2014) Assessment of accuracy of robotically assisted unicompartmental arthroplasty. Knee Surg Sports Traumatol Arthrosc 22:1918–1925

    PubMed  Google Scholar 

  61. Nam D, Maher PA, Rebolledo BJ, Nawabi DH, McLawhorn AS, Pearle AD (2013) Patient specific cutting guides versus an imageless, computer-assisted surgery system in total knee arthroplasty. Knee 20:263–267

    PubMed  Google Scholar 

  62. Negrin R, Duboy J, Iniguez M, Reyes NO, Barahona M, Ferrer G et al (2021) Robotic-assisted vs conventional surgery in medial unicompartmental knee arthroplasty: a clinical and radiological study. Knee Surg Relat Res 33:5

    PubMed  PubMed Central  Google Scholar 

  63. Pailhe R (2021) Total knee arthroplasty: latest robotics implantation techniques. Orthop Traumatol Surg Res. https://doi.org/10.1016/j.otsr.2020.102780

    Article  PubMed  Google Scholar 

  64. Parratte S, Price AJ, Jeys LM, Jackson WF, Clarke HD (2019) Accuracy of a new robotically assisted technique for total knee arthroplasty: a cadaveric study. J Arthroplasty 34:2799–2803

    PubMed  Google Scholar 

  65. Pearle AD, van der List JP, Lee L, Coon TM, Borus TA, Roche MW (2017) Survivorship and patient satisfaction of robotic-assisted medial unicompartmental knee arthroplasty at a minimum two-year follow-up. Knee 24:419–428

    PubMed  PubMed Central  Google Scholar 

  66. Plate JF, Augart MA, Seyler TM, Bracey DN, Hoggard A, Akbar M et al (2017) Obesity has no effect on outcomes following unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 25:645–651

    PubMed  Google Scholar 

  67. Porcelli P, Marmotti A, Bellato E, Colombero D, Ferrero G, Agati G et al (2020) Comparing different approaches in robotic-assisted surgery for unicompartmental knee arthroplasty: outcomes at a short-term follow-up of MAKO versus NAVIO system. J Biol Regul Homeost Agents 34:393–404 (Congress of the Italian Orthopaedic Research Society)

    CAS  PubMed  Google Scholar 

  68. Robinson PG, Clement ND, Hamilton D, Blyth MJG, Haddad FS, Patton JT (2019) A systematic review of robotic-assisted unicompartmental knee arthroplasty: prosthesis design and type should be reported. Bone Joint J 101-B:838–847

    CAS  PubMed  Google Scholar 

  69. Rodriguez F, Harris S, Jakopec M, Barrett A, Gomes P, Henckel J et al (2005) Robotic clinical trials of uni-condylar arthroplasty. Int J Med Robot 1:20–28

    CAS  PubMed  Google Scholar 

  70. Seidenstein A, Birmingham M, Foran J, Ogden S (2021) Better accuracy and reproducibility of a new robotically-assisted system for total knee arthroplasty compared to conventional instrumentation: a cadaveric study. Knee Surg Sports Traumatol Arthrosc 29:859–866

    PubMed  Google Scholar 

  71. Siebert WMS, Kober R, Heeckt PF (2002) Technique and first clinical results of robot-assisted total knee replacement. Knee 9:173–180

    PubMed  Google Scholar 

  72. Sires JD, Wilson CJ (2020) CT validation of intraoperative implant position and knee alignment as determined by the MAKO total knee arthroplasty system. J Knee Surg. https://doi.org/10.1055/s-0040-1701447

    Article  PubMed  Google Scholar 

  73. Smith AF, Eccles CJ, Bhimani SJ, Denehy KM, Bhimani RB, Smith LS et al (2019) Improved patient satisfaction following robotic-assisted total knee arthroplasty. J Knee Surg. https://doi.org/10.1055/s-0039-1700837

    Article  PubMed  Google Scholar 

  74. Smith JR, Riches PE, Rowe PJ (2014) Accuracy of a freehand sculpting tool for unicondylar knee replacement. Int J Med Robot 10:162–169

    PubMed  Google Scholar 

  75. Song EK, Seon JK, Park SJ, Jung WB, Park HW, Lee GW (2011) Simultaneous bilateral total knee arthroplasty with robotic and conventional techniques: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc 19:1069–1076

    PubMed  Google Scholar 

  76. Song EK, Seon JK, Yim JH, Netravali NA, Bargar WL (2013) Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clin Orthop Relat Res 471:118–126

    PubMed  Google Scholar 

  77. St Mart JP, de Steiger RN, Cuthbert A, Donnelly W (2020) The three-year survivorship of robotically assisted versus non-robotically assisted unicompartmental knee arthroplasty. Bone Joint J 102-B:319–328

    PubMed  Google Scholar 

  78. Suero EM, Plaskos C, Dixon PL, Pearle AD (2012) Adjustable cutting blocks improve alignment and surgical time in computer-assisted total knee replacement. Knee Surg Sports Traumatol Arthrosc 20:1736–1741

    PubMed  Google Scholar 

  79. Sultan AA, Piuzzi N, Khlopas A, Chughtai M, Sodhi N, Mont MA (2017) Utilization of robotic-arm assisted total knee arthroplasty for soft tissue protection. Expert Rev Med Devices 14:925–927

    CAS  PubMed  Google Scholar 

  80. Sultan AA, Samuel LT, Khlopas A, Sodhi N, Bhowmik-Stoker M, Chen A et al (2019) Robotic-arm assisted total knee arthroplasty more accurately restored the posterior condylar offset ratio and the Insall-Salvati index compared to the manual technique; a cohort-matched study. Surg Technol Int 34:409–413

    PubMed  Google Scholar 

  81. Tamam C, Plate JF, Augart M, Poehling GG, Jinnah RH (2015) Retrospective clinical and radiological outcomes after robotic assisted bicompartmental knee arthroplasty. Adv Orthop. https://doi.org/10.1155/2015/747309

    Article  PubMed  PubMed Central  Google Scholar 

  82. van der List JP, Chawla H, Villa JC, Pearle AD (2016) Different optimal alignment but equivalent functional outcomes in medial and lateral unicompartmental knee arthroplasty. Knee 23:987–995

    PubMed  Google Scholar 

  83. van der List JP, Chawla H, Villa JC, Pearle AD (2017) The role of patient characteristics on the choice of unicompartmental versus total knee arthroplasty in patients with medial osteoarthritis. J Arthroplasty 32:761–766

    PubMed  Google Scholar 

  84. van der List JP, Kleeblad LJ, Zuiderbaan HA, Pearle AD (2017) Mid-term outcomes of metal-backed unicompartmental knee arthroplasty show superiority to all-polyethylene unicompartmental and total knee arthroplasty. HSS J 13:232–240

    PubMed  PubMed Central  Google Scholar 

  85. Wakelin EA, Shalhoub S, Lawrence JM, Keggi JM, DeClaire JH, Randall AL et al (2021) Improved total knee arthroplasty pain outcome when joint gap targets are achieved throughout flexion. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-021-06482-2

    Article  PubMed  Google Scholar 

  86. Yang HY, Seon JK, Shin YJ, Lim HA, Song EK (2017) Robotic total knee arthroplasty with a cruciate-retaining implant: a 10 year follow-up study. Clin Orthop Surg 9:169–176

    PubMed  PubMed Central  Google Scholar 

  87. Yim JH, Song EK, Khan MS, Sun ZH, Seon JK (2013) A comparison of classical and anatomical total knee alignment methods in robotic total knee arthroplasty: classical and anatomical knee alignment methods in TKA. J Arthroplasty 28:932–937

    PubMed  Google Scholar 

  88. Zuiderbaan HA, van der List JP, Chawla H, Khamaisy S, Thein R, Pearle AD (2016) Predictors of subjective outcome after medial unicompartmental knee arthroplasty. J Arthroplasty 31:1453–1458

    PubMed  Google Scholar 

Download references

Funding

Corin group, Arthrex gmbh, and Zimmer biomet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Elliott.

Ethics declarations

Conflict of interest

None.

Ethical approval

As this review is based on published and publicly reported literature, no specific ethical approval for this review is required.

Informed consent

As this is a secondary review study is based on primary research, no new informed consent has been obtained. All included studies had informed consent a priori.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elliott, J., Shatrov, J., Fritsch, B. et al. Robotic-assisted knee arthroplasty: an evolution in progress. A concise review of the available systems and the data supporting them. Arch Orthop Trauma Surg 141, 2099–2117 (2021). https://doi.org/10.1007/s00402-021-04134-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-04134-1

Keywords

Navigation