Skip to main content

Advertisement

Log in

Role of an anatomically contoured plate and metal block for balanced stability between the implant and lateral hinge in open-wedge high-tibial osteotomy

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Open-wedge high tibial osteotomy (OWHTO) is a well-established surgical option for medial compartment osteoarthritis of the varus knee. The initial strength of the fixation plate is critical for successful correction maintenance and healing of the osteotomy site. This study was conducted to verify if a newly designed anatomical plate (LCfit) improves the stability of both the medial implant and lateral hinge area, as well as to evaluate how the metal block contributes to both medial and lateral stability.

Materials and methods

A finite element (FE) tibial model was combined with TomoFix plate, a LCfit plate with and without a metal block. Data analysis was conducted to evaluate the balanced stability, which refers to the enforced lateral stability resulting from redistribution of overall stress. We assessed the balanced stability of the medial implant and lateral hinge area in three cases using the same Sawbones and loads using the tibia FE model.

Results

The LCfit plate reduced stress by 23.1% at the lateral hinge compared to the TomoFix plate (TomoFix vs. LCfit: 34.2 ± 23.3 MPa vs. 26.3 ± 17.5 MPa). The LCfit plate with a metal block reduced stress by 40.1% at the medial plate (210.1 ± 64.2 MPa vs. 125.8 ± 65.7 MPa) and by 31.2% (26.3 ± 17.5 MPa vs. 18.1 ± 12.1 MPa) at the lateral hinge area compared to the reduction using the LCfit plate without a metal block.

Conclusion

The newly designed fixation system for OWHTO balanced the overall stress distribution and reduced stress at the lateral hinge area compared to that using a conventional fixation system. The addition of the metal block showed additional benefits for balanced stability between the medial implant and lateral hinge area. However, this conclusion could only be drawn using the FE model in this study. Therefore, further clinical studies are necessary to reveal the clinical effect of reduced lateral stress on the occurrence of the lateral hinge fracture and the biologic effect of the metal block on the healing of the medial cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Agneskirchner JD, Freiling D, Hurschler C, Lobenhoffer P (2006) Primary stability of four different implants for opening wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 14:291–300

    Article  PubMed  CAS  Google Scholar 

  2. Blecha LD, Zambelli PY, Ramaniraka NA, Bourban PE, Manson JA, Pioletti DP (2005) How plate positioning impacts the biomechanics of the open wedge tibial osteotomy; a finite element analysis. Comput Methods Biomech Biomed Engin 8:307–313

    Article  PubMed  CAS  Google Scholar 

  3. Brosset T, Pasquier G, Migaud H, Gougeon F (2011) Opening wedge high tibial osteotomy performed without filling the defect but with locking plate fixation (TomoFix) and early weight-bearing: prospective evaluation of bone union, precision and maintenance of correction in 51 cases. Orthop Traumatol Surg Res 97:705–711

    Article  PubMed  CAS  Google Scholar 

  4. Cotic M, Vogt S, Hinterwimmer S, Feucht MJ, Slotta-Huspenina J, Schuster T, Imhoff AB (2014) A matched-pair comparison of two different locking plates for valgus-producing medial open-wedge high tibial osteotomy: peek-carbon composite plate versus titanium plate. Knee Surg Sports Traumatol Arthrosc 23(7):2032–2040

    Article  PubMed  Google Scholar 

  5. Dexel J, Fritzsche H, Beyer F, Harman MK, Lutzner J (2017) Open-wedge high tibial osteotomy: incidence of lateral cortex fractures and influence of fixation device on osteotomy healing. Knee Surg Sports Traumatol Arthrosc 25:832–837

    Article  PubMed  Google Scholar 

  6. Gaasbeek RD, Nicolaas L, Rijnberg WJ, van Loon CJ, van Kampen A (2010) Correction accuracy and collateral laxity in open versus closed wedge high tibial osteotomy. A one-year randomised controlled study. Int Orthop 34:201–207

    Article  PubMed  Google Scholar 

  7. Gardner MP, Chong AC, Pollock AG, Wooley PH (2010) Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Ann Biomed Eng 38:613–620

    Article  PubMed  Google Scholar 

  8. Golovakhsmall a CML, Orljanski W, Benedetto KP, Panchenko S, Buchler P, Henle P, Aghayev E (2014) Comparison of theoretical fixation stability of three devices employed in medial opening wedge high tibial osteotomy: a finite element analysis. BMC Musculoskelet Disord 15:230

    Article  Google Scholar 

  9. Han SB, Bae JH, Lee SJ, Jung TG, Kim KH, Kwon JH, Nha KW (2014) Biomechanical properties of a new anatomical locking metal block plate for opening wedge high tibial osteotomy: uniplane osteotomy. Knee Surg Relat Res 26:155–161

    Article  PubMed  PubMed Central  Google Scholar 

  10. Han SB, Lee DH, Shetty GM, Chae DJ, Song JG, Nha KW (2013) A “safe zone” in medial open-wedge high tibia osteotomy to prevent lateral cortex fracture. Knee Surg Sports Traumatol Arthrosc 21:90–95

    Article  PubMed  CAS  Google Scholar 

  11. Hoffler CE, Moore KE, Kozloff K, Zysset PK, Goldstein SA (2000) Age, gender, and bone lamellae elastic moduli. J Orthop Res 18:432–437

    Article  PubMed  CAS  Google Scholar 

  12. Kolb W, Guhlmann H, Windisch C, Kolb K, Koller H, Grutzner P (2009) Opening-wedge high tibial osteotomy with a locked low-profile plate. J Bone Joint Surg Am 91:2581–2588

    Article  PubMed  Google Scholar 

  13. Krone R, Schuster P (2006) An investigation on the importance of material anisotropy in finite-element modeling of the human femur. SAE International 2006-01-0064

  14. Kuiper JH, Huiskes R (1996) Friction and stem stiffness affect dynamic interface motion in total hip replacement. J Orthop Res 14:36–43

    Article  PubMed  CAS  Google Scholar 

  15. Lee YS, Kang JY, Lee MC, Elazab A, Choi UH, Kang SG, Lee KJ, Lee S (2017) Osteotomy configuration of the proximal wedge and analysis of the affecting factors in the medial open-wedge high tibial osteotomy. Knee Surg Sports Traumatol Arthrosc 25:793–799

    Article  PubMed  Google Scholar 

  16. Li G, Lopez O, Rubash H (2001) Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. J Biomech Eng 123:341–346

    Article  PubMed  CAS  Google Scholar 

  17. Luo CA, Hwa SY, Lin SC, Chen CM, Tseng CS (2015) Placement-induced effects on high tibial osteotomized construct—biomechanical tests and finite-element analyses. BMC Musculoskelet Disord 16:235

    Article  PubMed  PubMed Central  Google Scholar 

  18. Luo CA, Lin SC, Hwa SY, Chen CM, Tseng CS (2015) Biomechanical effects of plate area and locking screw on medial open tibial osteotomy. Comput Methods Biomech Biomed Eng 18:1263–1271

    Article  Google Scholar 

  19. Madry H, Goebel L, Hoffmann A, Duck K, Gerich T, Seil R, Tschernig T, Pape D (2016) Surgical anatomy of medial open-wedge high tibial osteotomy: crucial steps and pitfalls. Knee Surg Sports Traumatol Arthrosc 25(12):3661–3669

    Article  PubMed  Google Scholar 

  20. Martin R, Birmingham TB, Willits K, Litchfield R, Lebel ME, Giffin JR (2014) Adverse event rates and classifications in medial opening wedge high tibial osteotomy. Am J Sports Med 42:1118–1126

    Article  PubMed  Google Scholar 

  21. Meidinger G, Imhoff AB, Paul J, Kirchhoff C, Sauerschnig M, Hinterwimmer S (2011) May smokers and overweight patients be treated with a medial open-wedge HTO? Risk factors for non-union. Knee Surg Sports Traumatol Arthrosc 19:333–339

    Article  PubMed  Google Scholar 

  22. Miller BS, Dorsey WO, Bryant CR, Austin JC (2005) The effect of lateral cortex disruption and repair on the stability of the medial opening wedge high tibial osteotomy. Am J Sports Med 33:1552–1557

    Article  PubMed  Google Scholar 

  23. Miller BS, Downie B, McDonough EB, Wojtys EM (2009) Complications after medial opening wedge high tibial osteotomy. Arthroscopy 25:639–646

    Article  PubMed  Google Scholar 

  24. Nawas HT, Vansadia DV, Heltsley JR, Suri M, Montgomery S, Jones DG (2016) Factors Affecting the union of opening wedge high tibial osteotomy using a titanium wedge plate. Ochsner J 16:464–470

    PubMed  PubMed Central  Google Scholar 

  25. Nelissen EM, van Langelaan EJ, Nelissen RG (2010) Stability of medial opening wedge high tibial osteotomy: a failure analysis. Int Orthop 34:217–223

    Article  PubMed  CAS  Google Scholar 

  26. Noyes FR, Mayfield W, Barber-Westin SD, Albright JC, Heckmann TP (2006) Opening wedge high tibial osteotomy: an operative technique and rehabilitation program to decrease complications and promote early union and function. Am J Sports Med 34:1262–1273

    Article  PubMed  Google Scholar 

  27. Raja Izaham RM, Abdul Kadir MR, Abdul Rashid AH, Hossain MG, Kamarul T (2012) Finite element analysis of Puddu and Tomofix plate fixation for open wedge high tibial osteotomy. Injury 43:898–902

    Article  PubMed  Google Scholar 

  28. Rancourt D, Shirazi-Adl A, Drouin G, Paiement G (1990) Friction properties of the interface between porous-surfaced metals and tibial cancellous bone. J Biomed Mater Res 24:1503–1519

    Article  PubMed  CAS  Google Scholar 

  29. Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8:393–405

    Article  PubMed  CAS  Google Scholar 

  30. Schroter S, Gonser CE, Konstantinidis L, Helwig P, Albrecht D (2011) High complication rate after biplanar open wedge high tibial osteotomy stabilized with a new spacer plate (position HTO plate) without bone substitute. Arthroscopy 27:644–652

    Article  PubMed  Google Scholar 

  31. Smith JO, Wilson AJ, Thomas NP (2013) Osteotomy around the knee: evolution, principles and results. Knee Surg Sports Traumatol Arthrosc 21:3–22

    Article  PubMed  CAS  Google Scholar 

  32. Staubli AE, De Simoni C, Babst R, Lobenhoffer P (2003) TomoFix: a new LCP-concept for open wedge osteotomy of the medial proximal tibia–early results in 92 cases. Injury 34(Suppl 2):B55–62

    Article  PubMed  Google Scholar 

  33. Takeuchi R, Ishikawa H, Kumagai K, Yamaguchi Y, Chiba N, Akamatsu Y, Saito T (2012) Fractures around the lateral cortical hinge after a medial opening-wedge high tibial osteotomy: a new classification of lateral hinge fracture. Arthroscopy 28:85–94

    Article  PubMed  Google Scholar 

  34. Taylor WR, Heller MO, Bergmann G, Duda GN (2004) Tibio-femoral loading during human gait and stair climbing. J Orthop Res 22:625–632

    Article  PubMed  Google Scholar 

  35. Turkmen F, Kacira BK, Ozkaya M, Erkocak OF, Acar MA, Ozer M, Toker S, Demir T (2016) Comparison of monoplanar versus biplanar medial opening-wedge high tibial osteotomy techniques for preventing lateral cortex fracture. Knee Surg Sports Traumatol Arthrosc 25(9):2914–2920

    Article  PubMed  Google Scholar 

  36. Valkering KP, van den Bekerom MP, Kappelhoff FM, Albers GH (2009) Complications after tomofix medial opening wedge high tibial osteotomy. J Knee Surg 22:218–225

    Article  PubMed  Google Scholar 

  37. Vena G, D’Adamio S, Amendola A (2013) Complications of osteotomies about the knee. Sports Med Arthrosc 21:113–120

    Article  PubMed  Google Scholar 

  38. Viceconti M, Muccini R, Bernakiewicz M, Baleani M, Cristofolini L (2000) Large-sliding contact elements accurately predict levels of bone}implant micromotion relevant to osseointegration. J Biomech 33:1611–1618

    Article  PubMed  CAS  Google Scholar 

  39. Yacobucci GN, Cocking MR (2008) Union of medial opening-wedge high tibial osteotomy using a corticocancellous proximal tibial wedge allograft. Am J Sports Med 36:713–719

    Article  PubMed  Google Scholar 

  40. Yoo OS, Lee YS, Lee MC, Elazab A, Choi DG, Jang YW (2016) Evaluation of the screw position and angle using a post-contoured plate in the open wedge high tibial osteotomy according to the correction degree and surgical technique. Clin Biomech (Bristol Avon) 35:111–115

    Article  Google Scholar 

  41. Zaki SH, Rae PJ (2009) High tibial valgus osteotomy using the Tomofix plate–medium-term results in young patients. Acta Orthop Belg 75:360–367

    PubMed  Google Scholar 

Download references

Funding

Yong Seuk Lee this work was supported by a grant from the SNUBH Research Fund (09-2017-003) and Basic Science Research Program through the Ministry of Education of the Republic of Korea and National Research Foundation of Korea (NRF-2017R1D1A1A09000509). DoHyung Lim this work was supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (NRF-2017M3A9E9073544).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Seuk Lee.

Ethics declarations

Conflict of interest

Yong Seuk Lee and Myung Chul Lee receive royalty from Corentec.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Young Woong Jang and DoHyung Lim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, Y.W., Lim, D., Seo, H. et al. Role of an anatomically contoured plate and metal block for balanced stability between the implant and lateral hinge in open-wedge high-tibial osteotomy. Arch Orthop Trauma Surg 138, 911–920 (2018). https://doi.org/10.1007/s00402-018-2918-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-018-2918-9

Keywords

Navigation