Skip to main content
Log in

Cartilage repair surgery for full-thickness defects of the knee in Germany: indications and epidemiological data from the German Cartilage Registry (KnorpelRegister DGOU)

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Purpose

Treatment of cartilage defects of the knee remains an important issue with high relevance. In October 2013 the German Cartilage Registry (KnorpelRegister DGOU) was initiated in order to study indications, epidemiology and (clinical) outcome of different cartilage repair techniques. The present evaluation of the registry baseline data was initiated to report common practices of cartilage repair surgery in Germany.

Materials and methods

1065 consecutive patients who underwent surgical cartilage treatment of the knee have been included (complete data sets available in 1027 cases; FU rate 96.4 %) between October 1, 2013 and June 30, 2015. Data collection was performed using a web-based RDE System. All data were provided by the attending physician at the time of arthroscopic or open surgery of the affected knee.

Results

In 1027 cartilage repair procedures, single defects were treated in 80 % of the cases with the majority of the defects located on the medial femoral condyle, followed by the patella. Degenerative defects grade III or IV according to ICRS were treated in 60 % of the cases and therefore were found more frequently compared to traumatic or post-traumatic lesions. Autologous chondrocyte implantation (ACI) was the most common technique followed by bone marrow stimulation (BMS) and osteochondral transplantation (OCT). While ACI was performed in defects with a mean size of 4.11 cm2 SD SD 2.16), BMS and OCT (1.51 cm2, SD 1.19; p < 0.01) were applied in significantly smaller defects (both p < 0.01). Independent of defect size, the ratio of ACI versus BMS applications differed between different defect locations. ACI was used preferably in defects located on the patella.

Conclusion

The present analysis of data from the German Cartilage Registry shows that the vast majority of cartilage repair procedures were applied in degenerative, non-traumatic cartilage defects. Experts in Germany seem to follow the national and international guidelines in terms that bone marrow stimulation is applied in smaller cartilage defects while cell-based therapies are used for the treatment of larger cartilage defects. In patellar cartilage defects a trend towards the use of cell-based therapies has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Basad E, Ishaque B, Bachmann G, Sturz H, Steinmeyer J (2010) Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc 18(4):519–527

    Article  PubMed  Google Scholar 

  2. Becher C, Ettinger M, Ezechieli M, Kaps C, Ewig M, Smith T (2015) Repair of retropatellar cartilage defects in the knee with microfracture and a cell-free polymer-based implant. Arch Orthop Trauma Surg 135(7):1003–1010

    Article  PubMed  Google Scholar 

  3. Cicuttini F, Ding C, Wluka A, Davis S, Ebeling PR, Jones G (2005) Association of cartilage defects with loss of knee cartilage in healthy, middle-age adults: a prospective study. Arthritis Rheum 52(7):2033–2039

    Article  PubMed  Google Scholar 

  4. Cole BJ, Pascual-Garrido C, Grumet RC (2009) Surgical management of articular cartilage defects in the knee. J Bone Joint Surg Am 91(7):1778–1790

    PubMed  Google Scholar 

  5. Engen CN, Engebretsen L (2010) Knee cartilage defect patients enrolled in randomized controlled trials are not representative of patients in orthopedic practice. Cartilage 1(4):312–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heir S, Nerhus TK, Rotterud JH, Loken S, Ekeland A, Engebretsen L, Aroen A (2010) Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: a comparison of knee injury and osteoarthritis outcome score in 4 patient categories scheduled for knee surgery. Am J Sports Med 38(2):231–237

    Article  PubMed  Google Scholar 

  7. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M (2002) Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 18(7):730–734

    Article  PubMed  Google Scholar 

  8. Hunziker EB (2002) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10(6):432–463

    Article  CAS  PubMed  Google Scholar 

  9. Mithoefer K, Hambly K, Della Villa S, Silvers H, Mandelbaum BR (2009) Return to sports participation after articular cartilage repair in the knee: scientific evidence. Am J Sports Med 37(Suppl 1):167S–176S

    Article  PubMed  Google Scholar 

  10. Niemeyer P, Andereya S, Angele P, Ateschrang A, Aurich M, Baumann M, Behrens P, Bosch U, Erggelet C, Fickert S et al (2013) Autologous Chondrocyte Implantation (ACI) for Cartilage Defects of the Knee: a Guideline by the Working Group “Tissue Regeneration” of the German Society of Orthopaedic Surgery and Traumatology (DGOU). Z Orthop Unfall 151(1):38–47

    CAS  PubMed  Google Scholar 

  11. Niemeyer P, Kreuz PC, Steinwachs M, Sudkamp NP (2007) Operative treatment of cartilage lesions in the knee joint. Sportverletz Sportschaden 21(1):41–50

    Article  CAS  PubMed  Google Scholar 

  12. Niemeyer P, Pestka JM, Kreuz PC, Erggelet C, Schmal H, Suedkamp NP, Steinwachs M (2008) Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint. Am J Sports Med 36(11):2091–2099

    Article  PubMed  Google Scholar 

  13. Niemeyer P, Schweigler K, Grotejohann B, Maurer J, Angele P, Aurich M, Becher C, Fay J, Feil R, Fickert S et al (2015) The German Cartilage Registry (KnorpelRegister DGOU) for evaluation of surgical treatment for cartilage defects: experience after 6 months including first demographic data. Z Orthop Unfall 153(1):67–74

    Article  CAS  PubMed  Google Scholar 

  14. Niemeyer P, Uhl M, Salzmann GM, Morscheid YP, Sudkamp NP, Madry H (2015) Evaluation and analysis of graft hypertrophy by means of arthroscopy, biochemical MRI and osteochondral biopsies in a patient following autologous chondrocyte implantation for treatment of a full-thickness-cartilage defect of the knee. Arch Orthop Trauma Surg 135(6):819–830

    Article  PubMed  Google Scholar 

  15. Roos EM, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD (1998) Knee Injury and Osteoarthritis Outcome Score (KOOS)–development of a self-administered outcome measure. J Orthop Sports Phys Ther 28(2):88–96

    Article  CAS  PubMed  Google Scholar 

  16. Saris D, Price A, Widuchowski W, Bertrand-Marchand M, Caron J, Drogset JO, Emans P, Podskubka A, Tsuchida A, Kili S et al (2014) Matrix-applied characterized autologous cultured chondrocytes versus microfracture: 2-year follow-up of a prospective randomized trial. Am J Sports Med 42(6):1384–1394

    Article  PubMed  Google Scholar 

  17. Saris DB, Vanlauwe J, Victor J, Almqvist KF, Verdonk R, Bellemans J, Luyten FP (2009) Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med 37(Suppl 1):10S–19S

    Article  PubMed  Google Scholar 

  18. Saris DB, Vanlauwe J, Victor J, Haspl M, Bohnsack M, Fortems Y, Vandekerckhove B, Almqvist KF, Claes T, Handelberg F et al (2008) Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 36(2):235–246

    Article  PubMed  Google Scholar 

  19. Schinhan M, Gruber M, Vavken P, Dorotka R, Samouh L, Chiari C, Gruebl-Barabas R, Nehrer S (2012) Critical-size defect induces unicompartmental osteoarthritis in a stable ovine knee. J Orthop Res 30(2):214–220

    Article  PubMed  Google Scholar 

  20. Solheim E, Krokeide AM, Melteig P, Larsen A, Strand T, Brittberg M (2014) Symptoms and function in patients with articular cartilage lesions in 1000 knee arthroscopies. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-014-3472-9

  21. Solheim E, Oyen J, Hegna J, Austgulen OK, Harlem T, Strand T (2010) Microfracture treatment of single or multiple articular cartilage defects of the knee: a 5-year median follow-up of 110 patients. Knee Surg Sports Traumatol Arthrosc 18(4):504–508

    Article  PubMed  Google Scholar 

  22. Vanlauwe J, Saris DB, Victor J, Almqvist KF, Bellemans J, Luyten FP (2011) Tig/Act, Group EXTS. Five-year outcome of characterized chondrocyte implantation versus microfracture for symptomatic cartilage defects of the knee: early treatment matters. Am J Sports Med 39(12):2566–2574

    Article  PubMed  Google Scholar 

  23. Vaquero J, Forriol F (2012) Knee chondral injuries: clinical treatment strategies and experimental models. Injury 43(6):694–705

    Article  PubMed  Google Scholar 

  24. Widuchowski W, Widuchowski J, Trzaska T (2007) Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 14(3):177–182

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Niemeyer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niemeyer, P., Feucht, M.J., Fritz, J. et al. Cartilage repair surgery for full-thickness defects of the knee in Germany: indications and epidemiological data from the German Cartilage Registry (KnorpelRegister DGOU). Arch Orthop Trauma Surg 136, 891–897 (2016). https://doi.org/10.1007/s00402-016-2453-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-016-2453-5

Keywords

Navigation