Skip to main content
Log in

Patella tracking and patella contact pressure in modular patellofemoral arthroplasty: a biomechanical in vitro analysis

  • Knee Arthroplasty
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

In the recent years modular partial knee prosthesis with the opportunity to combine unicompartmental tibiofemoral (UKA) and patellofemoral prosthesis (PFJ) were introduced to the clinics. To date, little is known about the biomechanics of these bi-cruciate retaining prosthetic designs. Aim of this study was to evaluate the influence of a PFJ in bicompartmental arthroplasty (UKA + PFJ) on patella tracking and retropatella pressure distribution.

Methods

A dynamic in vitro knee kinemator simulating an isokinetic extension cycle of the knee was used on eight knee specimen. Patella tracking and patellofemoral contact pressure were evaluated using pressure sensitive films after implantation of a medial UNI and after subsequent implantation of a PFJ.

Results

Whereas the area contact pressure remained the same after PFJ implantation, the contact area was reduced significantly and significantly elevated peak pressures were determined in deep flexion and close to extension. The patella tracking was not significantly altered, however, effects of edge loading could be shown.

Conclusion

When using PFJ prosthesis, one must be aware of altered pressure introduction on the retropatella surface compared to the physiological situation. The elevated peak pressures and reduced contact area may be an argument for patella resurfacing and the problems of edge loading indicate that care must be taken on the correct implantation of the device with no implant overhang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akbarshahi M, Fernandez JW, Schache AG, Pandy MG (2014) Subject-specific evaluation of patellofemoral joint biomechanics during functional activity. Med Eng Phys 36(9):1122–1133. doi:10.1016/j.medengphy.2014.06.009

    Article  PubMed  Google Scholar 

  2. Becher C, Heyse TJ, Kron N, Ostermeier S, Hurschler C, Schofer MD, Fuchs-Winkelmann S, Tibesku CO (2009) Posterior stabilized TKA reduce patellofemoral contact pressure compared with cruciate retaining TKA in vitro. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 17(10):1159–1165. doi:10.1007/s00167-009-0768-2

    Article  Google Scholar 

  3. Becher C, Huber R, Thermann H, Paessler HH, Skrbensky G (2008) Effects of a contoured articular prosthetic device on tibiofemoral peak contact pressure: a biomechanical study. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 16(1):56–63. doi:10.1007/s00167-007-0416-7

    Article  Google Scholar 

  4. Beck PR, Thomas AL, Farr J, Lewis PB, Cole BJ (2005) Trochlear contact pressures after anteromedialization of the tibial tubercle. Am J Sports Med 33(11):1710–1715. doi:10.1177/0363546505278300

    Article  PubMed  Google Scholar 

  5. Calliess T, Schado S, Richter BI, Becher C, Ezechieli M, Ostermeier S (2014) Quadriceps force during knee extension in different replacement scenarios with a modular partial prosthesis. Clin Biomech (Bristol, Avon) 29(2):218–222. doi:10.1016/j.clinbiomech.2013.11.007

    Article  Google Scholar 

  6. Deschamps G, Chol C (2011) Fixed-bearing unicompartmental knee arthroplasty. Patients’ selection and operative technique. Orthop Traumatol Surg Res 97(6):648–661. doi:10.1016/j.otsr.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  7. Durselen L, Claes L, Kiefer H (1995) The influence of muscle forces and external loads on cruciate ligament strain. Am J Sports Med 23(1):129–136

    Article  CAS  PubMed  Google Scholar 

  8. Ettinger M, Zoch JM, Becher C, Hurschler C, Stukenborg-Colsman C, Claassen L, Ostermeier S, Calliess T (2015) In vitro kinematics of fixed versus mobile bearing in unicondylar knee arthroplasty. Arch Orthop Trauma Surg 135(6):871–877. doi:10.1007/s00402-015-2214-x

    Article  PubMed  Google Scholar 

  9. Feucht MJ, Cotic M, Beitzel K, Baldini JF, Meidinger G, Schottle PB, Imhoff AB (2015) A matched-pair comparison of inlay and onlay trochlear designs for patellofemoral arthroplasty: no differences in clinical outcome but less progression of osteoarthritis with inlay designs. Knee Surg Sports Traumatol Arthrosc Off J ESSKA. doi:10.1007/s00167-015-3733-2

    Google Scholar 

  10. Fuchs S, Schutte G, Witte H, Rosenbaum D (2000) Retropatellar contact characteristics in total knee arthroplasty with and without patellar resurfacing. Int Orthop 24(4):191–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fuchs S, Schutte G, Witte H, Rosenbaum D (2000) What retropatellar changes result by implantation of a superficial knee joint prosthesis? Der Unfallchirurg 103(11):972–976

    Article  CAS  PubMed  Google Scholar 

  12. Fuchs S, Skwara A, Tibesku CO, Rosenbaum D (2005) Retropatellar contact characteristics before and after total knee arthroplasty. Knee 12(1):9–12. doi:10.1016/S0968-0160(02)00045-5

    Article  PubMed  Google Scholar 

  13. Harris ML, Morberg P, Bruce WJ, Walsh WR (1999) An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film. J Biomech 32(9):951–958

    Article  CAS  PubMed  Google Scholar 

  14. Hatfield GL, Hubley-Kozey CL, Astephen Wilson JL, Dunbar MJ (2011) The effect of total knee arthroplasty on knee joint kinematics and kinetics during gait. J Arthroplast 26(2):309–318. doi:10.1016/j.arth.2010.03.021

    Article  Google Scholar 

  15. Heyse TJ, Becher C, Kron N, Ostermeier S, Hurschler C, Schofer MD, Tibesku CO, Fuchs-Winkelmann S (2010) Patellofemoral pressure after TKA in vitro: highly conforming vs. posterior stabilized inlays. Arch Orthop Trauma Surg 130(2):191–196. doi:10.1007/s00402-009-0920-y

    Article  PubMed  Google Scholar 

  16. Heyse TJ, El-Zayat BF, De Corte R, Scheys L, Chevalier Y, Fuchs-Winkelmann S, Labey L (2014) Biomechanics of medial unicondylar in combination with patellofemoral knee arthroplasty. Knee 21(Suppl 1):S3–S9. doi:10.1016/S0968-0160(14)50002-6

    Article  PubMed  Google Scholar 

  17. Heyse TJ, Khefacha A, Cartier P (2010) UKA in combination with PFR at average 12-year follow-up. Arch Orthop Trauma Surg 130(10):1227–1230. doi:10.1007/s00402-009-0997-3

    Article  PubMed  Google Scholar 

  18. Heyse TJ, Tucker SM, Rajak Y, Kia M, Lipman JD, Imhauser CW, Westrich GH (2015) Frontal plane stability following UKA in a biomechanical study. Arch Orthop Trauma Surg 135(6):857–865. doi:10.1007/s00402-015-2198-6

    Article  PubMed  Google Scholar 

  19. Komistek RD, Dennis DA, Mabe JA, Walker SA (2000) An in vivo determination of patellofemoral contact positions. Clin Biomech (Bristol, Avon) 15(1):29–36

    Article  CAS  Google Scholar 

  20. Leichtle UG, Wunschel M, Leichtle CI, Muller O, Kohler P, Wulker N, Lorenz A (2014) Increased patellofemoral pressure after TKA: an in vitro study. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 22(3):500–508. doi:10.1007/s00167-013-2372-8

    Article  Google Scholar 

  21. Lonner JH (2004) Patellofemoral arthroplasty: pros, cons, and design considerations. Clin Orthop Relat Res 428:158–165

    Article  PubMed  Google Scholar 

  22. Matsuda S, Ishinishi T, White SE, Whiteside LA (1997) Patellofemoral joint after total knee arthroplasty. Effect on contact area and contact stress. J Arthroplast 12(7):790–797

    Article  CAS  Google Scholar 

  23. Ostermeier S, Buhrmester O, Hurschler C, Stukenborg-Colsman C (2005) Dynamic in vitro measurement of patellar movement after total knee arthroplasty: an in vitro study. BMC Musculoskelet Disord 6:30. doi:10.1186/1471-2474-6-30

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ostermeier S, Holst M, Bohnsack M, Hurschler C, Stukenborg-Colsman C, Wirth CJ (2007) In vitro measurement of patellar kinematics following reconstruction of the medial patellofemoral ligament. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 15(3):276–285. doi:10.1007/s00167-006-0200-0

    Article  Google Scholar 

  25. Ostermeier S, Hurschler C, Stukenborg-Colsman C (2004) Quadriceps function after TKA—an in vitro study in a knee kinematic simulator. Clin Biomech (Bristol, Avon) 19(3):270–276. doi:10.1016/j.clinbiomech.2003.11.006

    Article  CAS  Google Scholar 

  26. Rolston L, Bresch J, Engh G, Franz A, Kreuzer S, Nadaud M, Puri L, Wood D (2007) Bicompartmental knee arthroplasty: a bone-sparing, ligament-sparing, and minimally invasive alternative for active patients. Orthopedics 30(8 Suppl):70–73

    PubMed  Google Scholar 

  27. Skwara A, Tibesku CO, Ostermeier S, Stukenborg-Colsman C, Fuchs-Winkelmann S (2009) Differences in patellofemoral contact stresses between mobile-bearing and fixed-bearing total knee arthroplasties: a dynamic in vitro measurement. Arch Orthop Trauma Surg 129(7):901–907. doi:10.1007/s00402-008-0757-9

    Article  PubMed  Google Scholar 

  28. Song MH, Kim BH, Ahn SJ, Yoo SH, Kang SW, Oh KT (2013) Does the appearance of the patellofemoral joint at surgery influence the clinical result in medial unicompartmental knee arthroplasty? Knee 20(6):457–460. doi:10.1016/j.knee.2013.05.005

    Article  PubMed  Google Scholar 

  29. Steinbruck A, Schroder C, Woiczinski M, Fottner A, Muller PE, Jansson V (2013) Patellofemoral contact patterns before and after total knee arthroplasty: an in vitro measurement. Biomed Eng Online 12:58. doi:10.1186/1475-925X-12-58

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stukenborg-Colsman C, Ostermeier S, Burmester O, Wirth CJ (2003) Dynamic in vitro measurement of retropatellar pressure after knee arthroplasty. Orthopade 32(4):319–322. doi:10.1007/s00132-002-0442-6

    Article  CAS  PubMed  Google Scholar 

  31. Tan SM, Dutton AQ, Bea KC, Kumar VP (2013) Bicompartmental versus total knee arthroplasty for medial and patellofemoral osteoarthritis. J Orthop Surg (Hong Kong) 21(3):281–284

    Google Scholar 

Download references

Acknowledgments

We thank DePuy Orthopaedics, Kirkel, Germany, for their support of this study. They provided the implants and instrumentation for this study free of charge. However, the sponsor did not participate in the design of the study, in the evaluation of the results, or in the writing of the article. We also thank Simon Wechsler and Berna Richter for their support and input in performing the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilman Calliess.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calliess, T., Ettinger, M., Schado, S. et al. Patella tracking and patella contact pressure in modular patellofemoral arthroplasty: a biomechanical in vitro analysis. Arch Orthop Trauma Surg 136, 849–855 (2016). https://doi.org/10.1007/s00402-016-2451-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-016-2451-7

Keywords

Navigation