Skip to main content
Log in

Strength does not influence knee function in the ACL-deficient knee but is a correlate of knee function in the and ACL-reconstructed knee

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Purpose

Knee function, whether anterior cruciate ligament (ACL)-deficient or ACL-reconstructed, is related to many conditions, and no single biomechanical variable can be used to definitively assess knee performance. The purpose of this study was to investigate the relationship between extension and flexion muscle strength and knee function in patients prior and following ACL reconstruction.

Methods

44 ACL-deficient patients with a mean age of 26.6 years were tested between 3 and 6 months following an acute injury and 2 years following ACL reconstruction. All reconstructed patients underwent surgical reconstruction within 6 months of ACL injury using bone-patellar tendon and interference screws. The Cincinnati knee rating system was used to assess knee function. Muscle strength was assessed with the Biodex™ Dynamometer. Isokinetic concentric and eccentric flexion and extension peak torque (Nm/kg) was tested at three different speeds: 60°/s, 120°/s and 180°/s. Isometric strength was tested in 30° and 60° of knee flexion. Both the involved and non-involved legs were tested to calculate symmetry indices.

Results

The mean Cincinnati score in the ACL-deficient patient was 62.0 ± 14.5 (range 36–84) and increased to 89.3 ± 9.5 (range 61–100) in the ACL-reconstructed patient. Significant relationships between knee function and muscle strength in the ACL-deficient group were observed for knee symmetry indices (r = 0.38–0.50, p = 0.0001–0.05). In the ACL-reconstructed group significant relationships between knee functionality were observed for isometric and isokinetic peak torque of the involved limb (r = 0.46–0.71, p = 0.0001–0.007).

Conclusion

The findings of this study suggest that neither extension nor flexion peak torque were correlates of knee function in the ACL-deficient knee. However, leg symmetry indices were correlated to knee function. In the ACL-reconstructed knee, knee symmetry indices were not related to knee function but extension and flexion isokinetic concentric and isometric peak torque were.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ageberg E, Roos HP, Silbernagel KG, Thomee R, Roos EM (2009) Knee extension and flexion muscle power after anterior cruciate ligament reconstruction with patellar tendon or hamstring grafts: a cross-sectional comparison 3 years post surgery. Knee Surg Sports Traumatol Arthrosc 17:162–169

    Article  PubMed  Google Scholar 

  2. Aglietti P, Giron F, Buzzi R, Biddau F, Sasso F (2004) Anterior cruciate ligament reconstruction: bone-patellar tendon-bone compared with double semitendinosus and gracilis tendon grafts. A prospective, randomized clinical trial. J Bone Joint Surg Am 86A:2143–2155

    Google Scholar 

  3. Andriacchi TP (1990) Dynamics of pathological motion: applied to the anterior cruciate deficient knee. J Biomech 23:99–105

    Article  PubMed  Google Scholar 

  4. Barber SD, Noyes FR, Mangine RE, McCloskey JE, Hartman W (1990) Qualitative assessment of functional limitations in normal and anterior cruciate ligament deficient knees. Clin Orth 255:204–214

    Google Scholar 

  5. Blackburn JT, Norcorss MF, Padua DA (2011) Influences of hamstring stiffness and strength on anterior knee joint stability. Clin Biomech 26:278–283

    Article  Google Scholar 

  6. Bryant AL, Kelly J, Hohmann E (2009) Neuromuscular adaptations and correlates of knee functionality following ACL reconstruction. J Orthop Res 26:126–135

    Article  Google Scholar 

  7. Bryant AL, Newton RU, Steele J (2009) Successful feed-forward strategies following ACL injury and reconstruction. J Electromyogr Kinesiol 19:988–997

    Article  PubMed  Google Scholar 

  8. Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates Inc. Publishers, New Jersey. 2nd edition

  9. de Jong SN, van Caspel DR, van Haeff MJ, Saris DB (2007) Functional assessment and muscle strength before and after reconstruction of chronic anterior cruciate ligament lesions. Arthroscopy 23:21–28

    PubMed  Google Scholar 

  10. Eitzen I, Eitzen TJ, Holm I, Snyder-Mackler L, Risberg MA (2010) Anterior cruciate ligament-deficient potential copers and noncopers reveal different isokinetic quadriceps strength profiles in the early stage after injury. Am J Sports Med 38:586–593

    Article  PubMed  PubMed Central  Google Scholar 

  11. Greenberger HB, Paterno MV (1995) Relationship of knee extensor strength and hopping tests performance in the assessment of lower extremity function. J Orthop Sports Phys Ther 22:202–206

    Article  CAS  PubMed  Google Scholar 

  12. Hart JA, Pietrosimone B, Hertel J, Ingersoll CD (2010) Quadriceps activation following knee injuries: a systematic review. J Athl Train 45:87–97

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hohmann E, Bryant A, Reaburn P, Tetsworth K (2010) Does posterior tibial slope influence knee functionality in the anterior cruciate ligament-deficient and anterior cruciate ligament-reconstructed knee? Arthroscopy 26:1496–1502

    Article  PubMed  Google Scholar 

  14. Hohmann E, Bryant A, Tetsworth K (2010) Tunnel positioning in anterior cruciate ligament reconstruction: how long is the learning curve? Knee Surg Sports Traumatol Arthrosc 18:1576–1582

    Article  PubMed  Google Scholar 

  15. Hohmann E, Tetsworth K, Bryant A (2011) Physiotherapy-guided versus home-based, unsupervised rehabilitation in isolated anterior cruciate injuries following surgical reconstruction. Knee Surg Sports Traumatol Arthrosc 19:1158–1167

    Article  PubMed  Google Scholar 

  16. Hurd WJ, Axe MJ, Snyder-Mackler L (2008) A 10 year prospective trial of a patient management algorithm and screening examination for highly active individuals with ACL injury. Part II: determinants of knee stability. Am J Sports Med 36:48–56

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jarvela K, Kannus P, Latvala K, Jarvinen M (2002) Simple measurements in assessing muscle performance after an ACL reconstruction. Int J Sports Med 23:196–201

    Article  CAS  PubMed  Google Scholar 

  18. Karanikas K, Arampatzis A, Brüggemann GP (2009) Motor task and muscle strength followed different adaptation patterns after anterior cruciate ligament reconstruction. Eur J Rehabil Med 45:37–45

    CAS  Google Scholar 

  19. Keays SL, Bullock-Saxton JE, Newcombe P, Keays AC (2003) The relationship between knee strength and functional stability before and after anterior cruciate ligament reconstruction. J Orthop Research 21:231–237

    Article  CAS  Google Scholar 

  20. Keays SL, Bullock-Saxton JE, Keays AC, Newcombe P, Bullok MI (2007) A 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior cruciate ligament reconstruction: Patellar tendon versus semitendinosus and gracilis tendon graft. Am J Sports Med 35:729–739

    Article  PubMed  Google Scholar 

  21. Kramer J, Nusca D, Fowler P, Webster-Bogaert S (1993) Knee flexor and extensor strength during concentric and eccentric muscle actions after anterior cruciate ligament reconstruction using semitendinosus tendon and ligament augmentation device. Am J Sports Med 21:285–291

    Article  CAS  PubMed  Google Scholar 

  22. Kubo K, Ikeburo T, Yaeshima K, Yata H, Tsunoda N, Kanehisa H (2009) Effects of static and dynamic training on the stiffness and blood volume of tendon in vivo. J Appl Physiol 106:412–417

    Article  PubMed  Google Scholar 

  23. Lautamies R, Harilainen A, Kettunen J, Sandelin J, Kujala UM (2008) Isokinetic quadriceps and hamstring muscle strength and knee function 5 years after anterior cruciate ligament reconstruction: comparison between bone-patellar tendon-bone and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 16:1009–1016

    Article  PubMed  Google Scholar 

  24. Mihelic R, Jurdana H, Jotanovic Z, Madjarevic T, Tudor A (2011) Long-term results of anterior cruciate ligament reconstruction: a comparison with non-operative treatment with a follow-up of 17-20 years. Int Orthop 35:1093–1097

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mir SM, Hadian MR, Talebian S, Nasseri N (2008) Functional assessment of knee joint position sense following anterior cruciate ligament reconstruction. Br J Sports Med 42:300–303

    Article  CAS  PubMed  Google Scholar 

  26. Muaidi QI, Nicholson LL, Refshauge KM, Adams RD, Roe JP (2009) Effect of anterior cruciate ligament injury and reconstruction on proprioceptive acuity of knee rotation in the transverse plane. Am J Sports Med 37:1618–1626

    Article  PubMed  Google Scholar 

  27. Natri A, Jarvinen M, Latvala K, Kannus P (1996) Isokinetic muscle performance after anterior cruciate liagment surgery. Long-term results and outcome predictors after primary surgery and late-phase reconstruction. Int J Sports Med 17:223–228

    Article  CAS  PubMed  Google Scholar 

  28. Osteras H, Augestad LB, Tonde S (1998) Isokinetic muscle strength after anterior cruciate ligament reconstruction. Scand J Med Sci Sports 8:279–282

    Article  CAS  PubMed  Google Scholar 

  29. Risberg MA, Holm I, Myklebust G, Engebretsen L (2007) Neuromuscular training versus strength training during the first 6 months after anterior cruciate ligament reconstruction. Phys Ther 87:737–750

    Article  PubMed  Google Scholar 

  30. Rudolph KS, Axe MJ, Buchanan TS (2001) Dynamic stability in the anterior cruciate ligament deficient knee. Knee Surg Sports Traumatol Arthrosc 9:62–71

    Article  CAS  PubMed  Google Scholar 

  31. Rudolph KS, Axe MJ, Snyder-Mackler L (2000) Dynamic stability after ACL injury: who can hop? Knee Surg Sports Traumatol Arthrosc 8:262–269

    Article  CAS  PubMed  Google Scholar 

  32. Shelbourne KD, Torry MR, Pandy MG (2005) Effect of muscle compensation on knee instability during ACL-deficient gait. Med Sci Sports Exerc 37:642–648

    Article  Google Scholar 

  33. Snyder-Mackler L, Ladin Z, Schepsis AA (1991) Electrical stimulation of the thigh muscles after reconstruction of the anterior cruciate ligament. Effects of electrically elicited contractions of the quadriceps femoris and hamstring muscles on gait and on strength of the thigh muscles. J Bone Joint Surg Am 73:1025–1036

    CAS  PubMed  Google Scholar 

  34. Snyder-Mackler L, Delitto A, Bailey SL, Stralka SW (1995) Strength of the quadriceps femoris muscle and functional recovery after reconstruction of the anterior cruciate ligament. A prospective, randomized clinical trial of electrical stimulation. J Bone Joint Surg Am 77:1166–1173

    CAS  PubMed  Google Scholar 

  35. Steele JR, Brown JM (1999) Effects of chronic anterior cruciate ligament deficiency on muscle activation patterns during an abrupt deceleration task. Clinical Biomech (Bristol, Avon) 14:247–257

    Article  CAS  Google Scholar 

  36. Swanik CB, Covassin T, Stearne DJ, Schatz P (2007) The relationship between neurocognitive function and noncontact anterior cruciate ligament injuries. Am J Sports Med 35:943–948

    Article  PubMed  Google Scholar 

  37. Wilk KE, Romaniello WT, Soscia SM, Arrigo C, Andrews JR (1994) The relationship between subjective knee scores, isokinetic testing and functional testing in the ACL reconstructed knee. J Orthop Sports Phys Ther 20:60–73

    Article  CAS  PubMed  Google Scholar 

  38. Williams GN, Barrance PJ, Snyder-Mackler L, Buchanan TS (2004) Altered quadriceps control in people with anterior cruciate ligament deficiency. Med Sci Sports Exerc 36:1089–1097

    Article  PubMed  Google Scholar 

  39. Williams GN, Buchanan TS, Barrance PJ, Axe MJ, Snyder-Mackler L (2005) Quadriceps weakness, atrophy and activation failure in predicted non-copers after anterior cruciate ligament injury. Am J Sports Med 33:402–407

    Article  PubMed  Google Scholar 

  40. Wojtys EM, Huston LJ (1994) Neuromuscular performance in normal and anterior cruciate ligament deficient lower extremities. Am J Sports Med 22:89–104

    Article  CAS  PubMed  Google Scholar 

  41. Yoo JH, Lim BO, Ha M, Lee SW, Oh SJ, Lee YS, Kim JG (2009) A meta-analysis of the effect of neuromuscular training on the prevention of the anterior cruciate ligament injury in female athletes. Knee Surg Sports Traumatol Arthrosc 18:824–8309

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Hohmann.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hohmann, E., Bryant, A. & Tetsworth, K. Strength does not influence knee function in the ACL-deficient knee but is a correlate of knee function in the and ACL-reconstructed knee. Arch Orthop Trauma Surg 136, 477–483 (2016). https://doi.org/10.1007/s00402-015-2392-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-015-2392-6

Keywords

Navigation