Skip to main content
Log in

Influence of posterior lateral femoral condyle geometry on patellar dislocation

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Patellar instability is a condition with multifactorial aetiology, potentially involving soft tissue characteristics, the bony anatomy of the patella, femur and tibia, and alignment of the lower limb. The shape of the distal femur and patellofemoral joint has been frequently studied using plain orthogonal and skyline radiographs. We investigated a possible contribution of hypoplasia of the lateral femoral condyle in the axial plane to patellar instability.

Methods

The geometry of the distal femur and alignment of the lower limb on plain radiographs and MRI scans in 25 young adult patients with patellar instability was measured, and compared to a control group of 75 age-matched patients. Measurements were validated by intra-observer and inter-observer reliability studies, and multivariate analysis was used to compare the groups. Cases with and without high Beighton score or knee hyperextension were also compared.

Results

The anatomical posterior condylar angle, anterior condylar angle and sulcus angle on axial MRI scans showed insignificant differences between groups. The Blackburne-Peel ratio, anatomical femoro-tibial angle and femoral joint angle showed significant differences between groups, but not the tibial plateau angle. There was a significant correlation between posterior condylar angle and valgus knee alignment. In cases with joint hypermobility, femoral joint angle was significantly increased and posterior condylar angle was significantly decreased.

Conclusions

Multiplanar hypoplasia of the lateral femoral condyle resulting in a valgus knee is a risk factor for patellar instability in young patients without osteoarthritis or joint hypermobility. Isolated posterior lateral condyle hypoplasia appears to be unrelated to patellar instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Erickson BJ, Mascarenhas R, Sayegh ET et al (2015) Does operative treatment of first-time patellar dislocations lead to increased patellofemoral stability? A systematic review of overlapping meta-analyses. Arthroscopy. doi:10.1016/j.arthro.2014.11.040

  2. Dath R, Chakravarthy J, Porter K (2006) Patella dislocations. Trauma 8:5–11. doi:10.1191/1460408606ta353ra

    Article  Google Scholar 

  3. Lewallen L, McIntosh A, Dahm D (2015) First-time patellofemoral dislocation: risk factors for recurrent instability. J Knee Surg. doi:10.1055/s-0034-1398373

    PubMed  Google Scholar 

  4. Petri M, Liodakis E, Hofmeister M et al (2013) Operative vs conservative treatment of traumatic patellar dislocation: results of a prospective randomized controlled clinical trial. Arch Orthop Trauma Surg 133:209–213. doi:10.1007/s00402-012-1639-8

    Article  CAS  PubMed  Google Scholar 

  5. Roth S, Madarevic T, Vukelic L et al (2013) Influence of arthroscopic lateral release on functional recovery in adolescents with recurrent patellar dislocation. Arch Orthop Trauma Surg 133:1441–1445. doi:10.1007/s00402-013-1805-7

    Article  PubMed  Google Scholar 

  6. Duthon VB (2015) Acute traumatic patellar dislocation. Orthop Traumatol Surg Res 101:S59–S67. doi:10.1016/j.otsr.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  7. Herrington L, Nester C (2004) Q-angle undervalued? The relationship between Q-angle and medio-lateral position of the patella. Clin Biomech 19:1070–1073. doi:10.1016/j.clinbiomech.2004.07.010

    Article  Google Scholar 

  8. Camathias C, Rutz E, Götze M et al (2014) Poor outcome at 7.5 years after Stanisavljevic quadriceps transposition for patello-femoral instability. Arch Orthop Trauma Surg 134:473–478. doi:10.1007/s00402-014-1947-2

    Article  PubMed  Google Scholar 

  9. Blackburne JS, Peel TE (1977) A new method of measuring patellar height. J Bone Joint Surg Br 59:241–242

    CAS  PubMed  Google Scholar 

  10. Insall J, Goldberg V, Salvati E (1972) Recurrent dislocation and the high-riding patella. Clin Orthop Relat Res 88:67–69

    Article  CAS  PubMed  Google Scholar 

  11. Dowd GS, Bentley G (1986) Radiographic assessment in patellar instability and chondromalacia patellae. J Bone Joint Surg Br 68:297–300

    CAS  PubMed  Google Scholar 

  12. Senavongse W, Amis AA (2005) The effects of articular, retinacular, or muscular deficiencies on patellofemoral joint stability: a biomechanical study in vitro. J Bone Joint Surg Br 87:577–582. doi:10.1302/0301-620X.87B4.14768

    Article  CAS  PubMed  Google Scholar 

  13. Pandit S, Frampton C, Stoddart J, Lynskey T (2011) Magnetic resonance imaging assessment of tibial tuberosity-trochlear groove distance: normal values for males and females. Int Orthop 35:1799–1803. doi:10.1007/s00264-011-1240-8

    Article  PubMed Central  PubMed  Google Scholar 

  14. Schueda MA, Astur DC, Bier RS et al (2015) Use of computed tomography to determine the risk of patellar dislocation in 921 patients with patellar instability. Open Access J Sports Med 6:55–62. doi:10.2147/OAJSM.S75243

    PubMed Central  PubMed  Google Scholar 

  15. Desio SM, Burks RT, Bachus KN (1998) Soft tissue restraints to lateral patellar translation in the human knee. Am J Sports Med 26:59–65

    CAS  PubMed  Google Scholar 

  16. Terry GC, Hughston JC, Norwood LA (1986) The anatomy of the iliopatellar band and iliotibial tract. Am J Sports Med 14:39–45

    Article  CAS  PubMed  Google Scholar 

  17. Amis AA, Senavongse W, Bull AMJ (2006) Patellofemoral kinematics during knee flexion-extension: an in vitro study. J Orthop Res 24:2201–2211. doi:10.1002/jor.20268

    Article  PubMed  Google Scholar 

  18. Deandrade JR, Grant C, Dixon AS (1965) Joint distension and reflex muscle inhibition in the knee. J Bone Joint Surg Am 47:313–322

    CAS  PubMed  Google Scholar 

  19. Nomura E, Inoue M, Kobayashi S (2006) Generalized joint laxity and contralateral patellar hypermobility in unilateral recurrent patellar dislocators. Arthroscopy 22:861–865. doi:10.1016/j.arthro.2006.04.090

    Article  PubMed  Google Scholar 

  20. Churchill DL, Incavo SJ, Johnson CC, Beynnon BD (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res 356:111–118

    Article  PubMed  Google Scholar 

  21. Laurin CA, Dussault R, Levesque HP (1979) The tangential x-ray investigation of the patellofemoral joint: x-ray technique, diagnostic criteria and their interpretation. Clin Orthop Relat Res 144:16–26

    PubMed  Google Scholar 

  22. (2007) Kodak Carestream PACS. Eastman Kodak Health Group, Rochester, NY, USA

  23. Nagamine R, Miura H, Bravo CV et al (2000) Anatomic variations should be considered in total knee arthroplasty. J Orthop Sci 5:232–237. doi:10.1007/s007760000050232.776

    Article  CAS  PubMed  Google Scholar 

  24. Poilvache PL, Insall JN, Scuderi GR, Font-Rodriguez DE (1996) Rotational landmarks and sizing of the distal femur in total knee arthroplasty. Clin Orthop Relat Res 331:35–46

    Article  PubMed  Google Scholar 

  25. Luo C-F, Koshino T, Takeuchi R, Saito T (2001) Reliability of the transepicondylar line as a parameter of femoral axial alignment. J Orthop Sci 6:373–377. doi:10.1007/s007760170001

    Article  CAS  PubMed  Google Scholar 

  26. Matsuda S, Matsuda H, Miyagi T et al (1998) Femoral condyle geometry in the normal and varus knee. Clin Orthop Relat Res 349:183–188

    Article  PubMed  Google Scholar 

  27. Morizane K, Takahashi T, Konishi F, Yamamoto H (2011) The anterior trochlear line as a reference for femoral component positioning in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19:2009–2015. doi:10.1007/s00167-011-1401-8

    Article  PubMed  Google Scholar 

  28. Powers CM, Shellock FG, Pfaff M (1998) Quantification of patellar tracking using kinematic MRI. J Magn Reson Imaging 8:724–732

    Article  CAS  PubMed  Google Scholar 

  29. McGraw KO, Wong SP (1996) Forming inferences about some intraclass correlation coefficients. Psychol Methods 1:30–46. doi:10.1037/1082-989X.1.1.30

    Article  Google Scholar 

  30. (2011) IBM SPSS Statistics. IBM Corporation, Armonk, NY, USA

  31. Beighton P, Solomon L, Soskolne CL (1973) Articular mobility in an African population. Ann Rheum Dis 32:413–418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Biedert RM (2012) Patellar instability with increased knee flexion due to lateral femoral condyle distal dysplasia: a report of two cases. Knee 19:140–143. doi:10.1016/j.knee.2010.12.003

    Article  PubMed  Google Scholar 

  33. Charles MD, Haloman S, Chen L et al (2013) Magnetic resonance imaging-based topographical differences between control and recurrent patellofemoral instability patients. Am J Sports Med 41:374–384. doi:10.1177/0363546512472441

    Article  PubMed  Google Scholar 

  34. Akagi M, Yamashita E, Nakagawa T et al (2001) Relationship between frontal knee alignment and reference axes in the distal femur. Clin Orthop Relat Res 388:147–156

    Article  PubMed  Google Scholar 

  35. Victor J (2009) Rotational alignment of the distal femur: a literature review. Orthop Traumatol Surg Res 95:365–372. doi:10.1016/j.otsr.2009.04.011

    Article  CAS  PubMed  Google Scholar 

  36. Hatayama K, Terauchi M, Higuchi H et al (2011) Relationship between femoral component rotation and total knee flexion gap balance on modified axial radiographs. J Arthroplasty 26:649–653. doi:10.1016/j.arth.2010.05.029

    Article  PubMed  Google Scholar 

  37. Thienpont E, Schwab P-E, Paternostre F, Koch P (2014) Rotational alignment of the distal femur: anthropometric measurements with CT-based patient-specific instruments planning show high variability of the posterior condylar angle. Knee Surg Sports Traumatol Arthrosc 22:2995–3002. doi:10.1007/s00167-014-3086-2

    Article  PubMed  Google Scholar 

  38. Matsuda S, Miura H, Nagamine R et al (2004) Anatomical analysis of the femoral condyle in normal and osteoarthritic knees. J Orthop Res 22:104–109. doi:10.1016/S0736-0266(03)00134-7

    Article  PubMed  Google Scholar 

  39. Griffin FM, Insall JN, Scuderi GR (1998) The posterior condylar angle in osteoarthritic knees. J Arthroplasty 13:812–815

    Article  CAS  PubMed  Google Scholar 

  40. Cahue S, Dunlop D, Hayes K et al (2004) Varus-valgus alignment in the progression of patellofemoral osteoarthritis. Arthritis Rheum 50:2184–2190. doi:10.1002/art.20348

    Article  PubMed  Google Scholar 

  41. Amis AA (2007) Current concepts on anatomy and biomechanics of patellar stability. Sports Med Arthrosc 15:48–56. doi:10.1097/JSA.0b013e318053eb74

    Article  PubMed  Google Scholar 

  42. Ryzek D-F, Schöttle P (2015) Patellofemoral dysfunction in sports trochleoplasty: indications and techniques. J Knee Surg. doi:10.1055/s-0034-1398374

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mrs Janet Christie for Assistance with PACS software; Dr David Hamilton for guidance on statistics and manuscript review; Mr Paul Jenkins for guidance on study design and patient identification; Dr Sarah-Louise Kelly for performing measurements for interobserver analysis; Mrs Deborah MacDonald for study management; Mrs Margaret MacDougall for statistics guidance for the reliability study; and Mr Tae Tawonsawatruk for performing measurements for interobserver analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Gillespie.

Ethics declarations

Conflict of interest

None.

Ethical standards

This study was performed with ethics committee approval in accordance with the Declaration of Helsinki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillespie, D., Mandziak, D. & Howie, C. Influence of posterior lateral femoral condyle geometry on patellar dislocation. Arch Orthop Trauma Surg 135, 1503–1509 (2015). https://doi.org/10.1007/s00402-015-2310-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-015-2310-y

Keywords

Navigation