Skip to main content
Log in

Pelvic movement strategies and leg extension power in patients with end-stage medial compartment knee osteoarthritis: a cross-sectional study

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

During movement tasks, patients with medial compartment knee osteoarthritis use compensatory strategies to minimise the joint load of the affected leg. Movement strategies of the knees and trunk have been investigated, but less is known about movement strategies of the pelvis during advancing functional tasks, and how these strategies are associated with leg extension power. The aim of the study was to investigate pelvic movement strategies and leg extension power in patients with end-stage medial compartment knee osteoarthritis compared with controls.

Materials and methods

57 patients (mean age 65.6 years) scheduled for medial uni-compartmental knee arthroplasty, and 29 age and gender matched controls were included in this cross-sectional study. Leg extension power was tested with the Nottingham Leg Extension Power-Rig. Pelvic range of motion was derived from an inertia-based measurement unit placed over the sacrum bone during walking, stair climbing and stepping.

Results

Patients had lower leg extension power than controls (20–39 %, P < 0.01) and used greater pelvic range of motion during stair and step ascending and descending (P ≤ 0.03, except for pelvic range of motion in the frontal plane during ascending, P > 0.06). Furthermore, an inverse association (coefficient: −0.03 to −0.04; R 2 = 13–22 %) between leg extension power and pelvic range of motion during stair and step descending was found in the patients.

Conclusions

Compared to controls, patients with medial compartment knee osteoarthritis use greater pelvic movements during advanced functional performance tests, particularly when these involve descending tasks. Further studies should investigate if it is possible to alter these movement strategies by an intervention aimed at increasing strength and power for the patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wengler A, Nimptsch U, Mansky T (2014) Hip and knee replacement in Germany and the USA: analysis of individual inpatient data from German and US hospitals for the years 2005–2011. Deutsches Arzteblatt Int 111(23–24):407–416. doi:10.3238/arztebl.2014.0407

    Google Scholar 

  2. Prieto-Alhambra D, Judge A, Javaid MK, Cooper C, Diez-Perez A, Arden NK (2014) Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: influences of age, gender and osteoarthritis affecting other joints. Ann Rheum Dis 73(9):1659–1664. doi:10.1136/annrheumdis-2013-203355

    Article  PubMed Central  PubMed  Google Scholar 

  3. Felson DT (2009) Developments in the clinical understanding of osteoarthritis. Arthritis Res Ther 11(1):203. doi:10.1186/ar2531

    Article  PubMed Central  PubMed  Google Scholar 

  4. Astephen JL, Deluzio KJ, Caldwell GE, Dunbar MJ, Hubley-Kozey CL (2008) Gait and neuromuscular pattern changes are associated with differences in knee osteoarthritis severity levels. J Biomech 41(4):868–876. doi:10.1016/j.jbiomech.2007.10.016

    Article  PubMed  Google Scholar 

  5. Kumar D, Swanik CB, Reisman DS, Rudolph KS (2014) Individuals with medial knee osteoarthritis show neuromuscular adaptation when perturbed during walking despite functional and structural impairments. J Appl Physiol (Bethesda, Md : 1985) 116(1):13–23. doi:10.1152/japplphysiol.00244.2013

    Article  Google Scholar 

  6. van der Esch M, Knoop J, van der Leeden M, Voorneman R, Gerritsen M, Reiding D, Romviel S, Knol DL, Lems WF, Dekker J, Roorda LD (2012) Self-reported knee instability and activity limitations in patients with knee osteoarthritis: results of the Amsterdam osteoarthritis cohort. Clin Rheumatol 31(10):1505–1510. doi:10.1007/s10067-012-2025-1

    Article  PubMed  Google Scholar 

  7. da Silva HG, Cliquet Junior A, Zorzi AR, Batista de Miranda J (2012) Biomechanical changes in gait of subjects with medial knee osteoarthritis. Acta Ortop Bras 20(3):150–156. doi:10.1590/s1413-78522012000300004

    Article  PubMed Central  PubMed  Google Scholar 

  8. Creaby MW, Bennell KL, Hunt MA (2012) Gait differs between unilateral and bilateral knee osteoarthritis. Arch Phys Med Rehabil 93(5):822–827. doi:10.1016/j.apmr.2011.11.029

    Article  PubMed  Google Scholar 

  9. Hunt MA, Wrigley TV, Hinman RS, Bennell KL (2010) Individuals with severe knee osteoarthritis (OA) exhibit altered proximal walking mechanics compared with individuals with less severe OA and those without knee pain. Arthritis Care Res 62(10):1426–1432. doi:10.1002/acr.20248

    Article  Google Scholar 

  10. Mundermann A, Dyrby CO, Andriacchi TP (2005) Secondary gait changes in patients with medial compartment knee osteoarthritis: increased load at the ankle, knee, and hip during walking. Arthritis Rheum 52(9):2835–2844. doi:10.1002/art.21262

    Article  PubMed  Google Scholar 

  11. Bejek Z, Paroczai R, Illyes A, Kiss RM (2006) The influence of walking speed on gait parameters in healthy people and in patients with osteoarthritis. Knee Surg Sports Traumatol Arthrosc 14(7):612–622. doi:10.1007/s00167-005-0005-6

    Article  PubMed  Google Scholar 

  12. Chen CP, Chen MJ, Pei YC, Lew HL, Wong PY, Tang SF (2003) Sagittal plane loading response during gait in different age groups and in people with knee osteoarthritis. Am J Phys Med Rehabil Assoc Acad Physiatr 82(4):307–312. doi:10.1097/01.phm.0000056987.33630.56

    Google Scholar 

  13. Bennell KL, Hunt MA, Wrigley TV, Hunter DJ, McManus FJ, Hodges PW, Li L, Hinman RS (2010) Hip strengthening reduces symptoms but not knee load in people with medial knee osteoarthritis and varus malalignment: a randomised controlled trial. Osteoarthr Cartil OARS Osteoarthr Res Soc 18(5):621–628

    Article  CAS  Google Scholar 

  14. Bolink SA, van Laarhoven SN, Lipperts M, Heyligers IC, Grimm B (2012) Inertial sensor motion analysis of gait, sit-stand transfers and step-up transfers: differentiating knee patients from healthy controls. Physiol Meas 33(11):1947–1958. doi:10.1088/0967-3334/33/11/1947

    Article  CAS  PubMed  Google Scholar 

  15. Asay JL, Mundermann A, Andriacchi TP (2009) Adaptive patterns of movement during stair climbing in patients with knee osteoarthritis. J Orthop Res 27(3):325–329. doi:10.1002/jor.20751

    Article  PubMed  Google Scholar 

  16. Liikavainio T, Lyytinen T, Tyrvainen E, Sipila S, Arokoski JP (2008) Physical function and properties of quadriceps femoris muscle in men with knee osteoarthritis. Arch Phys Med Rehabil 89(11):2185–2194. doi:10.1016/j.apmr.2008.04.012

    Article  PubMed  Google Scholar 

  17. Palmieri-Smith RM, Thomas AC, Karvonen-Gutierrez C, Sowers MF (2010) Isometric quadriceps strength in women with mild, moderate, and severe knee osteoarthritis. Am J Phys Med Rehabil Assoc Acad Physiatr 89(7):541–548. doi:10.1097/PHM.0b013e3181ddd5c3

    Article  Google Scholar 

  18. Ruhdorfer A, Dannhauer T, Wirth W, Hitzl W, Kwoh CK, Guermazi A, Hunter DJ, Benichou O, Eckstein F (2013) Thigh muscle cross-sectional areas and strength in advanced versus early painful osteoarthritis: an exploratory between-knee, within-person comparison in osteoarthritis initiative participants. Arthritis Care Res 65(7):1034–1042. doi:10.1002/acr.21965

    Article  Google Scholar 

  19. Barker KL, Jenkins C, Pandit H, Murray D (2012) Muscle power and function 2 years after unicompartmental knee replacement. Knee 19(4):360–364. doi:10.1016/j.knee.2011.05.006

    Article  PubMed  Google Scholar 

  20. Whitchelo T, McClelland JA, Webster KE (2013) Factors associated with stair climbing ability in patients with knee osteoarthritis and knee arthroplasty: a systematic review. Disabil Rehabil. doi:10.3109/09638288.2013.829526

    PubMed  Google Scholar 

  21. O’Reilly SC, Jones A, Muir KR, Doherty M (1998) Quadriceps weakness in knee osteoarthritis: the effect on pain and disability. Ann Rheum Dis 57(10):588–594

    Article  PubMed Central  PubMed  Google Scholar 

  22. Chun SW, Kim KE, Jang SN, Kim KI, Paik NJ, Kim KW, Jang HC, Lim JY (2013) Muscle strength is the main associated factor of physical performance in older adults with knee osteoarthritis regardless of radiographic severity. Arch Gerontol Geriatr 56(2):377–382. doi:10.1016/j.archger.2012.10.013

    Article  PubMed  Google Scholar 

  23. Puthoff ML, Nielsen DH (2007) Relationships among impairments in lower-extremity strength and power, functional limitations, and disability in older adults. Phys Ther 87(10):1334–1347. doi:10.2522/ptj.20060176

    Article  PubMed  Google Scholar 

  24. Aalund PK, Larsen K, Hansen TB, Bandholm T (2013) Normalized knee-extension strength or leg-press power after fast-track total knee arthroplasty: which measure is most closely associated with performance-based and self-reported function? Arch Phys Med Rehabil 94(2):384–390

    Article  PubMed  Google Scholar 

  25. Hawker GA, Mian S, Kendzerska T, French M (2011) Measures of adult pain: visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res 63(Suppl 11):S240–S252. doi:10.1002/acr.20543

    Article  Google Scholar 

  26. Roos EM, Roos HP, Ekdahl C, Lohmander LS (1998) Knee injury and Osteoarthritis Outcome Score (KOOS)––validation of a Swedish version. Scand J Med Sci Sports 8(6):439–448

    Article  CAS  PubMed  Google Scholar 

  27. Roos E (2012) KOOS scoring manual 2012. Ewa Roos. koos. nu. Accessed 04/23 2014

  28. Collins NJ, Roos EM (2012) Patient-reported outcomes for total hip and knee arthroplasty: commonly used instruments and attributes of a “good” measure. Clin Geriatr Med 28(3):367–394. doi:10.1016/j.cger.2012.05.007

    Article  PubMed  Google Scholar 

  29. Tanner SM, Dainty KN, Marx RG, Kirkley A (2007) Knee-specific quality-of-life instruments: which ones measure symptoms and disabilities most important to patients? Am J Sports Med 35(9):1450–1458. doi:10.1177/0363546507301883

    Article  PubMed  Google Scholar 

  30. Bassey EJ, Short AH (1990) A new method for measuring power output in a single leg extension: feasibility, reliability and validity. Eur J Appl Physiol 60(5):385–390

    Article  CAS  Google Scholar 

  31. Villadsen A, Roos EM, Overgaard S, Holsgaard-Larsen A (2012) Agreement and reliability of functional performance and muscle power in patients with advanced osteoarthritis of the hip or knee. Am J Phys Med Rehabil Assoc Acad Physiatr 91(5):401–410. doi:10.1097/PHM.0b013e3182465ed0

    Article  Google Scholar 

  32. Senden R, Grimm B, Heyligers IC, Savelberg HH, Meijer K (2009) Acceleration-based gait test for healthy subjects: reliability and reference data. Gait Posture 30(2):192–196. doi:10.1016/j.gaitpost.2009.04.008

    Article  CAS  PubMed  Google Scholar 

  33. Zijlstra W, Hof AL (2003) Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 18(2):1–10

    Article  PubMed  Google Scholar 

  34. Zijlstra A, Goosen JH, Verheyen CC, Zijlstra W (2008) A body-fixed-sensor based analysis of compensatory trunk movements during unconstrained walking. Gait Posture 27(1):164–167. doi:10.1016/j.gaitpost.2007.02.010

    Article  PubMed  Google Scholar 

  35. Hartmann A, Luzi S, Murer K, de Bie RA, de Bruin ED (2009) Concurrent validity of a trunk tri-axial accelerometer system for gait analysis in older adults. Gait Posture 29(3):444–448. doi:10.1016/j.gaitpost.2008.11.003

    Article  PubMed  Google Scholar 

  36. Wong WY, Wong MS (2008) Trunk posture monitoring with inertial sensors. Eur Spine J 17(5):743–753. doi:10.1007/s00586-008-0586-0

    Article  PubMed Central  PubMed  Google Scholar 

  37. Gonzalez RC, Lopez AM, Rodriguez-Uria J, Alvarez D, Alvarez JC (2010) Real-time gait event detection for normal subjects from lower trunk accelerations. Gait Posture 31(3):322–325. doi:10.1016/j.gaitpost.2009.11.014

    Article  PubMed  Google Scholar 

  38. Suresh K, Chandrashekara S (2012) Sample size estimation and power analysis for clinical research studies. J Hum Reprod Sci 5(1):7–13. doi:10.4103/0974-1208.97779

    Article  PubMed Central  PubMed  Google Scholar 

  39. Altman DG (1991) Practical statistics for medical research. Chapman & Hall, London

    Google Scholar 

  40. Taylor N, Evans O, Goldie P (2001) Reliability of measurement of angular movements of the pelvis and lumbar spine during treadmill walking. Physiother Res Int 6(4):205–223

    Article  CAS  PubMed  Google Scholar 

  41. Taylor NF, Goldie PA, Evans OM (1999) Angular movements of the pelvis and lumbar spine during self-selected and slow walking speeds. Gait Posture 9(2):88–94

    Article  CAS  PubMed  Google Scholar 

  42. Skelton DA, Greig CA, Davies JM, Young A (1994) Strength, power and related functional ability of healthy people aged 65–89 years. Age Ageing 23(5):371–377

    Article  CAS  PubMed  Google Scholar 

  43. Paradowski PT, Bergman S, Sunden-Lundius A, Lohmander LS, Roos EM (2006) Knee complaints vary with age and gender in the adult population. Population-based reference data for the Knee injury and Osteoarthritis Outcome Score (KOOS). BMC Musculoskelet Disord 7:38. doi:10.1186/1471-2474-7-38

    Article  PubMed Central  PubMed  Google Scholar 

  44. Barker KL, Crystal C, Newman M (2012) Effect of different angles of knee flexion on leg extensor power in healthy individuals. Physiotherapy 98(4):357–360. doi:10.1016/j.physio.2012.03.001

    Article  PubMed  Google Scholar 

  45. Hasegawa M, Chin T, Oki S, Kanai S, Shimatani K, Shimada T (2010) Effects of methods of descending stairs forwards versus backwards on knee joint force in patients with osteoarthritis of the knee: a clinical controlled study. Sports Med Arthrosc Rehabil Ther Technol SMARTT 2:14. doi:10.1186/1758-2555-2-14

    Article  PubMed  Google Scholar 

  46. Hortobagyi T, Garry J, Holbert D, Devita P (2004) Aberrations in the control of quadriceps muscle force in patients with knee osteoarthritis. Arthritis Rheum 51(4):562–569. doi:10.1002/art.20545

    Article  PubMed  Google Scholar 

  47. Sparling TL, Schmitt D, Miller CE, Guilak F, Somers TJ, Keefe FJ, Queen RM (2014) Energy recovery in individuals with knee osteoarthritis. Osteoarthr Cartil OARS Osteoarthr Res Soci. doi:10.1016/j.joca.2014.04.004

    Google Scholar 

Download references

Acknowledgments

Supported by the Bevica Foundation, provided inertia measurement unit for measurement of pelvic motion.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Signe Kierkegaard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kierkegaard, S., Jørgensen, P.B., Dalgas, U. et al. Pelvic movement strategies and leg extension power in patients with end-stage medial compartment knee osteoarthritis: a cross-sectional study. Arch Orthop Trauma Surg 135, 1217–1226 (2015). https://doi.org/10.1007/s00402-015-2276-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-015-2276-9

Keywords

Navigation