Skip to main content
Log in

Pathoanatomy and incidence of the posterolateral fractures in bicondylar tibial plateau fractures: a clinical computed tomography-based measurement and the associated biomechanical model simulation

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Objectives

The aim of our study is to evaluate the incidence and pathoanatomy of posterolateral fragments and analyze the associated fracture mechanism in bicondylar tibial plateau fractures.

Methods

From 1.1.2008 to 3.15.2012, all patients suffering bicondylar tibial plateau fractures were identified, scanned and analyzed at the Shanghai Clinical Trauma Center. Furthermore cadaver knees were selected into three groups of 30/60/90 knee flexion to simulate the posterolateral tibial plateau fracture by an impact device.

Results

One hundred and sixty-four (44.32 %) bicondylar tibial plateau fractures finally satisfied our requirements. Fifty-three and ninety-four cases were measured eventually in the groups of posterolateral split and depression. The posterolateral articular fragment proportion was 15.43 %. The posterolateral articular fragment angle showed an average of 12.94°. The posterolateral fragment cortical height was on average 2.96 cm. The posterolateral sagittal fragment angle averaged at 72.06°. Ninety-four cases were measured in the posterolateral depression group. The average posterolateral articular depression proportion was 16.74 %. The average posterolateral articular depression height was 2.47 cm. In the biomechanical modeling of such kinds of fracture patterns, posterolateral split fractures in 30° and 60° flexion are significantly more than those in 90° flexion. Posterolateral splits combined with anterolateral depression fractures in 30° flexion are significantly more than those in 90° flexion.

Conclusion

The incidence of posterolateral fractures is 44.32 % in bicondylar tibial plateau fractures. The morphology of posterolateral area can be referenced for the surgeon in the future clinical work. The information is also helpful for the design of locking plate and fracture modeling in biomechanical test. In addition, that posterolateral split and posterolateral depression might be caused by different injury mechanisms. Different angles of knee flexion under the axial impact loading are possibly the interpretations for these two fracture patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zeng ZM, Luo CF, Putnis S, Zeng BF (2011) Biomechanical analysis of posteromedial tibial plateau split fracture fixation. Knee 18(1):51–54. doi:10.1016/j.knee.2010.01.006

    Article  PubMed  Google Scholar 

  2. Weaver MJ, Harris MB, Strom AC, Smith RM, Lhowe D, Zurakowski D, Vrahas MS (2012) Fracture pattern and fixation type related to loss of reduction in bicondylar tibial plateau fractures. Injury 43(6):864–869. doi:10.1016/j.injury.2011.10.035

    Article  PubMed  Google Scholar 

  3. Pescatello LS, Murphy DM, Anderson D, Costanzo D, Dulipsingh L, De Souza MJ (2002) Daily physical movement and bone mineral density among a mixed racial cohort of women. Med Sci Sports Exerc 34(12):1966–1970. doi:10.1249/01.MSS.0000041363.55120.70

    Article  PubMed  CAS  Google Scholar 

  4. Solomon LB, Stevenson AW, Baird RP, Pohl AP (2010) Posterolateral transfibular approach to tibial plateau fractures: technique, results, and rationale. J Orthop Trauma 24(8):505–514. doi:10.1097/BOT.0b013e3181ccba4b

    Article  PubMed  Google Scholar 

  5. Tao J, Hang DH, Wang QG, Gao W, Zhu LB, Wu XF, Gao KD (2008) The posterolateral shearing tibial plateau fracture: treatment and results via a modified posterolateral approach. Knee 15(6):473–479. doi:10.1016/j.knee.2008.07.004

    Article  PubMed  Google Scholar 

  6. Yu GR, Xia J, Zhou JQ, Yang YF (2012) Low-energy fracture of posterolateral tibial plateau: treatment by a posterolateral prone approach. J Trauma Acute Care Surg 72(5):1416–1423. doi:10.1097/TA.0b013e318248e7e5

    PubMed  Google Scholar 

  7. Heidari N, Lidder S, Grechenig W, Tesch NP, Weinberg AM (2013) The risk of injury to the anterior tibial artery in the posterolateral approach to the tibia plateau: a cadaver study. J Orthop Trauma 27(4):221–225. doi:10.1097/BOT.0b013e318271f8f0

    Article  PubMed  Google Scholar 

  8. Sun H, Luo CF, Shi HP, Yang G, Zhong B, Zhang CQ, Zeng BF (2013) Morphological measurements of the posterior surface of the normal proximal tibia in a healthy Chinese population. Knee. doi:10.1016/j.knee.2012.10.025

    Google Scholar 

  9. Ewers BJ, Jayaraman VM, Banglmaier RF, Haut RC (2000) The effect of loading rate on the degree of acute injury and chronic conditions in the knee after blunt impact. Stapp Car Crash J 44:299–313

    PubMed  CAS  Google Scholar 

  10. Ewers BJ, Jayaraman VM, Banglmaier RF, Haut RC (2002) Rate of blunt impact loading affects changes in retropatellar cartilage and underlying bone in the rabbit patella. J Biomech 35(6):747–755

    Article  PubMed  CAS  Google Scholar 

  11. Zhu Y, Yang G, Luo CF, Smith WR, Hu CF, Gao H, Zhong B, Zeng BF (2012) Computed tomography-based three-column classification in tibial plateau fractures: introduction of its utility and assessment of its reproducibility. J Trauma Acute Care Surg 73(3):731–737. doi:10.1097/TA.0b013e31825c17e7

    Article  PubMed  Google Scholar 

  12. Luo CF, Sun H, Zhang B, Zeng BF (2010) Three-column fixation for complex tibial plateau fractures. J Orthop Trauma 24(11):683–692. doi:10.1097/BOT.0b013e3181d436f3

    Article  PubMed  Google Scholar 

  13. Zhang W, Luo CF, Putnis S, Sun H, Zeng ZM, Zeng BF (2012) Biomechanical analysis of four different fixations for the posterolateral shearing tibial plateau fracture. Knee 19(2):94–98. doi:10.1016/j.knee.2011.02.004

    Article  PubMed  Google Scholar 

  14. Barei DP, O’Mara TJ, Taitsman LA, Dunbar RP, Nork SE (2008) Frequency and fracture morphology of the posteromedial fragment in bicondylar tibial plateau fracture patterns. J Orthop Trauma 22(3):176–182. doi:10.1097/BOT.0b013e318169ef08

    Article  PubMed  Google Scholar 

  15. Higgins TF, Kemper D, Klatt J (2009) Incidence and morphology of the posteromedial fragment in bicondylar tibial plateau fractures. J Orthop Trauma 23(1):45–51. doi:10.1097/BOT.0b013e31818f8dc1

    Article  PubMed  Google Scholar 

  16. Banglmaier RF D-DD, Oniang’o TE, Haut RC. Axial compressive load response of the 90° flexed human tibiofemoral joint. In: 43rd Stapp Car Crash Conference. 1999; SAE 99SC08: pp 127–39

  17. Yeow CH, Ng KS, Cheong CH, Lee PV, Goh JC (2009) Repeated application of incremental landing impact loads to intact knee joints induces anterior cruciate ligament failure and tibiofemoral cartilage deformation and damage: a preliminary cadaveric investigation. J Biomech 42(8):972–981. doi:10.1016/j.jbiomech.2009.03.026

    Article  PubMed  CAS  Google Scholar 

  18. Yeow CH, Cheong CH, Ng KS, Lee PV, Goh JC (2008) Anterior cruciate ligament failure and cartilage damage during knee joint compression: a preliminary study based on the porcine model. Am J Sports Med 36(5):934–942. doi:10.1177/0363546507312645

    Article  PubMed  Google Scholar 

  19. Carlson DA (2005) Posterior bicondylar tibial plateau fractures. J Orthop Trauma 19(2):73–78

    Article  PubMed  Google Scholar 

  20. Chang SM, Wang X, Zhou JQ, Huang YG, Zhu XZ (2012) Posterior coronal plating of bicondylar tibial plateau fractures through posteromedial and anterolateral approaches in a healthy floating supine position. Orthopedics 35(7):583–588. doi:10.3928/01477447-20120621-03

    Article  PubMed  Google Scholar 

  21. Bhattacharyya T, McCarty LP, Harris MB, Morrison SM, Wixted JJ, Vrahas MS, Smith RM (2005) The posterior shearing tibial plateau fracture: treatment and results via a posterior approach. J Orthop Trauma 19(5):305–310

    PubMed  Google Scholar 

  22. Wicky S, Blaser PF, Blanc CH, Leyvraz PF, Schnyder P, Meuli RA (2000) Comparison between standard radiography and spiral CT with 3D reconstruction in the evaluation, classification and management of tibial plateau fractures. Eur Radiol 10(8):1227–1232

    Article  PubMed  CAS  Google Scholar 

  23. Hu YL, Ye FG, Ji AY, Qiao GX, Liu HF (2009) Three-dimensional computed tomography imaging increases the reliability of classification systems for tibial plateau fractures. Injury 40(12):1282–1285. doi:10.1016/j.injury.2009.02.015

    Article  PubMed  Google Scholar 

  24. Eggli S, Hartel MJ, Kohl S, Haupt U, Exadaktylos AK, Roder C (2008) Unstable bicondylar tibial plateau fractures: a clinical investigation. J Orthop Trauma 22(10):673–679. doi:10.1097/BOT.0b013e31818b1452

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We acknowledge Dr. Severin Meili from Switzerland for his kind review of our manuscript.

Conflict of interest

All authors certify that they have not signed any agreement with a commercial interest related to this study that would in any way limiting publication of any or all data generated for the study or to delay publication for any reason.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong-Feng Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Meili, S., Dong, MJ. et al. Pathoanatomy and incidence of the posterolateral fractures in bicondylar tibial plateau fractures: a clinical computed tomography-based measurement and the associated biomechanical model simulation. Arch Orthop Trauma Surg 134, 1369–1380 (2014). https://doi.org/10.1007/s00402-014-2037-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-014-2037-1

Keywords

Navigation