Skip to main content

Advertisement

Log in

Synergistic effects of galectin-1 and reactive astrocytes on functional recovery after contusive spinal cord injury

  • Basic Science
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Galectin-1 (Gal-1), a carbohydrate-binding protein, is differentially expressed by various normal and pathological tissues and appears to be functionally polyvalent. Recent evidence indicates that Gal-1 is involved in the proliferation of adult neural progenitor cells in neurogenic regions during adulthood. However, localization and functional roles of Gal-1 in the adult spinal cord have not been clarified.

Method

Here, we investigated the spatio-temporal profile of endogenous Gal-1 expression by in situ hybridization before and after experimental adult spinal cord injury and examined the correlation of Gal-1 with the fate of dividing cells in vivo, using double-labeling methods. Gal-1 mRNA was detectable at a relatively low level in uninjured spinal cord, but was markedly increased in the gray matter and/or white matter and in the ependyma rostral and caudal to the lesion site after injury.

Results

Co-localization results revealed that Gal-1 was expressed predominantly by GFAP-positive reactive astrocytes. In addition, intrathecal infusion of recombinant Gal-1 enhanced cell division and reactive astrocytosis in the adult spinal cord. To explore further whether Gal-1 and reactive astrocytes provide a synergistic effect on neurological recovery following SCI, we investigated the differences in behavioral analysis between wild-type (WT) and reactive astrocyte-deficient transgenic mice after injury and found neuroprotective effects of Gal-1 appeared to be specifically mediated through reactive astrocytes.

Conclusion

These results indicate that Gal-1 exhibits great potential as a novel neuroprotective agent for the treatment of SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Horner PJ, Power AE, Kempermann G, Kuhn HG, Palmer TD, Winkler J, Thal LJ, Gage FH (2000) Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J Neurosci 20:2218–2228

    PubMed  CAS  Google Scholar 

  2. Yamamoto S, Yamamoto N, Kitamura T, Nakamura K, Nakafuku M (2001) Proliferation of parenchymal neural progenitors in response to injury in the adult rat spinal cord. Exp Neurol 172:115–127

    Article  PubMed  CAS  Google Scholar 

  3. Takahashi M, Arai Y, Kurosawa H, Sueyoshi N, Shirai S (2003) Ependymal cell reactions in spinal cord segments after compression injury in adult rat. J Neuropathol Exp Neurol 62:185–194

    PubMed  CAS  Google Scholar 

  4. Barondes SH, Cooper DN, Gitt MA, Leffler H (1994) Galectins: structure and function of a large family of animal lectins. J Biol Chem 269:20807–20810

    PubMed  CAS  Google Scholar 

  5. Barondes SH, Castronovo V, Cooper DN, Cummings RD, Drickamer K, Feizi T, Gitt MA, Hirabayashi J, Hughes C, Kasai K (1994) Galectins: a family of animal beta-galactoside-binding lectins. Cell 76:597–598

    Article  PubMed  CAS  Google Scholar 

  6. Camby I, Mercier ML, Lefranc F, Kiss R (2006) Galectin-1: a small protein with major functions. Glycobiology 16:137–157

    Article  Google Scholar 

  7. Inagaki Y, Sohma Y, Horie H, Nozawa R, Kadoya T (2000) Oxidized galectin-1 promotes axonal regeneration in peripheral nerves but does not possess lectin properties. Eur J Biochem 267:2955–2964

    Article  PubMed  CAS  Google Scholar 

  8. Chang-Hong R, Wada M, Koyama S, Kimura H, Arawaka S, Kawanami T, Kurita K, Kadoya T, Aoki M, Itoyama Y (2005) Neuroprotective effect of oxidized galectin-1 in a transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurol 194:203–211

    Article  PubMed  CAS  Google Scholar 

  9. Horie H, Inagaki Y, Sohma Y, Nozawa R, Okawa K, Hasegawa M, Muramatsu N, Kawano H, Horie M, Koyama H (1999) Galectin-1 regulates initial axonal growth in peripheral nerves after axotomy. J Neurosci 19:9964–9974

    PubMed  CAS  Google Scholar 

  10. Horie H, Kadoya T, Hikawa N, Sango K, Inoue H, Takeshita K, Asawa R, Hiroi T, Sato M, Yoshioka T (2004) Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J Neurosci 24:1873–1880

    Article  PubMed  CAS  Google Scholar 

  11. Sakaguchi M, Shingo T, Okano HJ, Shiwa M, Okano H (2006) A carbohydrate-binding protein, galectin-1, promotes proliferation of adult neural stem cells. Proc Natl Acad Sci USA 103:7112–7117

    Article  PubMed  CAS  Google Scholar 

  12. Akazawa C, Nakamura Y, Sango K, Horie H, Kohsaka S (2004) Distribution of the galectin-1 mRNA in the rat nervous system: its transient upregulation in rat facial motor neurons after facial nerve axotomy. Neuroscience 125:171–178

    Article  PubMed  CAS  Google Scholar 

  13. Slezak M, Pfrieger FW (2003) New roles for astrocytes: regulation of CNS synaptogenesis. Trends Neurosci 26:531–535

    Article  PubMed  CAS  Google Scholar 

  14. Doetsch F, García-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    PubMed  CAS  Google Scholar 

  15. Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11:400–407

    Article  PubMed  CAS  Google Scholar 

  16. Fischer AJ, McGuire CR, Dierks BD, Reh TA (2002) Insulin and fibroblast growth factor 2 activate a neurogenic program in Müller glia of the chicken retina. J Neurosci 22:9387–9398

    PubMed  CAS  Google Scholar 

  17. Goutan E, Martí E, Ferrer I (1998) BDNF, and full length and truncated TrkB expression in the hippocampus of the rat following kainic acid excitotoxic damage. Evidence of complex time-dependent and cell-specific responses. Mol Brain Res 59:154–164

    Article  PubMed  CAS  Google Scholar 

  18. Sasaki T, Hirabayashi J, Kasai KI, Endo T (2004) Galectin-1 induces astrocyte differentiation, which leads to production of brain-derived neurotrophic factor. Glycobiology 14:357–363

    Article  PubMed  CAS  Google Scholar 

  19. Bush TG, Savidge TC, Freeman TC, Cox HJ, Campbell EA, Mucke L, Johnson MH, Sofroniew MV (1998) Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93:189–201

    Article  PubMed  CAS  Google Scholar 

  20. Bush TG, Puvanachandra N, Horner CH, Polito A, Ostenfeld T, Svendsen CN, Mucker L, Johnson MH, Sofroniew MV (1999) Leukocyte infiltration, neuronal degeneration and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron 23:297–308

    Article  PubMed  CAS  Google Scholar 

  21. Lee Y, Su M, Messing A, Brenner M (2006) Astrocyte heterogeneity revealed by expression of a GFAP-LacZ transgene. Glia 53:677–687

    Article  PubMed  Google Scholar 

  22. Scheff SW, Rabchevsky AG, Fugaccia I, Main JA, Lumpp JE (2003) Experimental modeling of spinal cord injury: characterization of a force-defined injury device. J Neurotrauma 20:179–193

    Article  PubMed  Google Scholar 

  23. Hayes CS, Mulkmus SA, Cizkova D, Yaksh TL, Hua XY (2003) A double-lumen intrathecal catheter for studies of modulation of spinal opiate tolerance. J Neurosci Methods 126:165–173

    Article  PubMed  Google Scholar 

  24. Basso DM, Beattie MS, Bresnahan JC (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transaction. Exp Neurol 139:244–256

    Article  PubMed  CAS  Google Scholar 

  25. Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530

    Article  PubMed  CAS  Google Scholar 

  26. Seri B, Garcia-Verdugo JM, Alvarez-Buylla A (2004) Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 478:359–378

    Article  PubMed  Google Scholar 

  27. Wu XH, Yang SH, Duan DY, Bao YT, Zhang Y (2007) Anti-apoptotic effect of insulin in the control of cell death and neurologic deficit after acute spinal cord injury in mice. J Neurotrauma 24:1502–1512

    Article  PubMed  Google Scholar 

  28. Radojicic M, Nistor G, Keirstead HS (2007) Ascending central canal dilation and progressive ependymal disruption in a contusion model of rodent chronic spinal cord injury. BMC Neurol 30:1481–1492

    Google Scholar 

  29. He J, Baum LG (2004) Presentation of galectin-1 by extracellular matrix trigger T cell death. J Biol Chem 279:4705–4712

    Article  PubMed  CAS  Google Scholar 

  30. Campos LS, Decker L, Taylor V, Skarnes W (2006) Notch, epidermal growth factor receptor, and beta1-integrin pathways are coordinated in neural stem cells. J Biol Chem 281:5300–5309

    Article  PubMed  CAS  Google Scholar 

  31. Iseda T, Nishio T, Kawaguchi S, Yamanoto M, Kawasaki T, Wakisaka S (2004) Spontaneous regeneration of the corticospinal tract after transection in young rats: a key role of reactive astrocytes in making favorable and unfavorable conditions for regeneration. Neuroscience 126:365–374

    Article  PubMed  CAS  Google Scholar 

  32. Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y, Okano H (2006) Conditional ablation of STAT3/SOCS3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12:829–834

    Article  PubMed  CAS  Google Scholar 

  33. Song H, Stevens CF, Gage FH (2002) Astroglia induce neurogenesis from adult neural stem cells. Nature 417:39–44

    Article  PubMed  CAS  Google Scholar 

  34. Barkho BZ, Song H, Gage FH (2006) Identification of astrocyte-expressed factors that modulate neural stem/progenitor cell differentiation. Stem Cells Dev 15:407–421

    Article  PubMed  CAS  Google Scholar 

  35. Azari MF, Profyris C, Zang DW, Petratos S, Cheema SS (2005) Induction of endogenous neural precursors in mouse models of spinal cord injury and disease. Eur J Neurol 12:638–648

    Article  PubMed  CAS  Google Scholar 

  36. Emirandetti A, Graciele Zanon R, Sabha M, de Oliveira AL (2006) Astrocyte reactivity influences the number of presynaptic terminals apposed to spinal motoneurons after axotomy. Brain Res 1095:35–42

    Article  PubMed  CAS  Google Scholar 

  37. Widestrand A, Faijerson J, Wilhelmsson U, Smith PL, Li L, Sihlbom C, Eriksson PS, Pekny M (2007) Increased neurogenesis and astrogenesis from neural progenitor cells grafted in the hippocampus of GFAP−/− Vim−/− mice. Stem Cells 25:2619–2627

    Article  PubMed  CAS  Google Scholar 

  38. Imura T, Kornblum HI, Sofroniew MV (2003) The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J Neurosci 23:2824–2832

    PubMed  CAS  Google Scholar 

  39. Imura T, Nakano I, Kornblum HI, Sofroniew MV (2006) Phenotypic and functional heterogeneity of GFAP-expressing cells in vitro: differential expression of LeX/CD15 by GFAP-expressing multipotent neural stem cells and non-neurogenic astrocytes. Glia 53:277–293

    Article  PubMed  Google Scholar 

  40. Jalabi W, Boehm N, Grucker D, Ghandour MS (2005) Recovery of myelin after induction of oligodendrocyte cell death in postnatal brain. J Neurosci 25:2885–2894

    Article  PubMed  CAS  Google Scholar 

  41. Gowing G, Vallières L, Julien JP (2006) Mouse model for ablation of proliferating microglia in acute CNS injuries. Glia 53:331–337

    Article  PubMed  Google Scholar 

  42. Lalancette-Hébert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27:2596–2605

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by National Nature Science Foundation of China (No. 30800333). The authors are very grateful to Cuifang Wang for her skilled technical assistance with histological processing and Jing Wang for assistance with behavioral tests.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, H., Xia, Y., Wang, S. et al. Synergistic effects of galectin-1 and reactive astrocytes on functional recovery after contusive spinal cord injury. Arch Orthop Trauma Surg 131, 829–839 (2011). https://doi.org/10.1007/s00402-010-1233-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-010-1233-x

Keywords

Navigation