Skip to main content

Advertisement

Log in

The systemic angiogenic response during bone healing

  • Basic Science
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Angiogenesis is known to be a critical and closely regulated step during bone formation and fracture healing driven by a complex interaction of various cytokines. Delays in bone healing or even nonunion might therefore be associated with altered concentrations of specific angiogenic factors. These alterations might in turn be reflected by changes in serum concentrations.

Method

To determine physiological time courses of angiogenic cytokines during fracture healing as well as possible changes associated with failed consolidation, we prospectively collected serum samples from patients who had sustained surgical treatment for a long bone fracture. Fifteen patients without fracture healing 4 months after surgery (nonunion group) were matched to a collective of 15 patients with successful healing (union group). Serum concentrations of angiogenin (ANG), angiopoietin 2 (Ang-2), basic fibroblast growth factor (bFGF), platelet derived growth factor AB (PDGF-AB), pleiotrophin (PTN) and vascular endothelial growth factor (VEGF) were measured using enzyme linked immunosorbent assays over a period of 24 weeks.

Results

Compared to reference values of healthy uninjured controls serum concentrations of VEGF, bFGF and PDGF were increased in both groups. Peak concentrations of these cytokines were reached during early fracture healing. Serum concentrations of bFGF and PDGF-AB were significantly higher in the union group at 2 and 4 weeks after the injury when compared to the nonunion group. Serum concentrations of ANG and Ang-2 declined steadily from the first measurement in normal healing fractures, while no significant changes over time could be detected for serum concentrations of these factures in nonunion patients. PTN serum levels increased asymptotically over the entire investigation in timely fracture healing while no such increase could be detected during delayed healing.

Conclusion

We conclude that fracture healing in human subjects is accompanied by distinct changes in systemic levels of specific angiogenic factors. Significant alterations of these physiologic changes in patients developing a fracture nonunion over time could be detected as early as 2 (bFGF) and 4 weeks (PDGF-AB) after initial trauma surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andrew JG, Hoyland JA, Freemont AJ, Marsh DR (1995) Platelet-derived growth factor expression in normally healing human fractures. Bone 16(4):455–460

    PubMed  CAS  Google Scholar 

  2. Badet J, Soncin F, N’Guyen T, Barritault D (1990) In vivo and in vitro studies of angiogenin—a potent angiogenic factor. Blood Coagul Fibrinolysis 1(6):721–724

    PubMed  CAS  Google Scholar 

  3. Barnes GL, Kostenuik PJ, Gerstenfeld LC, Einhorn TA (1999) Growth factor regulation of fracture repair. J Bone Miner Res 14(11):1805–1815

    Article  PubMed  CAS  Google Scholar 

  4. Bolander ME (1992) Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med 200(2):165–170

    PubMed  CAS  Google Scholar 

  5. Bourque WT, Gross M, Hall BK (1993) Expression of four growth factors during fracture repair. Int J Dev Biol 37(4):573–579

    PubMed  CAS  Google Scholar 

  6. Burgmann H, Hollenstein U, Maca T, Zedwitz-Liebenstein K, Thalhammer F, Koppensteiner R et al (1996) Increased serum laminin and angiogenin concentrations in patients with peripheral arterial occlusive disease. J Clin Pathol 49(6):508–510

    Article  PubMed  CAS  Google Scholar 

  7. Chua CC, Hamdy RC, Chua BH (2000) Mechanism of transforming growth factor-beta1-induced expression of vascular endothelial growth factor in murine osteoblastic MC3T3–E1 cells. Biochim Biophys Acta 1497(1):69–76

    Article  PubMed  CAS  Google Scholar 

  8. Einhorn TA, Simon G, Devlin VJ, Warman J, Sidhu SP, Vigorita VJ (1990) The osteogenic response to distant skeletal injury. J Bone Joint Surg Am 72(9):1374–1378

    PubMed  CAS  Google Scholar 

  9. Gazit D, Karmish M, Holzman L, Bab I (1990) Regenerating marrow induces systemic increase in osteo- and chondrogenesis. Endocrinology 126(5):2607–2613

    Article  PubMed  CAS  Google Scholar 

  10. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5(6):623–628

    Article  PubMed  CAS  Google Scholar 

  11. Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Tsay A, Fitch J et al (2003) Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res 18(9):1584–1592

    Article  PubMed  CAS  Google Scholar 

  12. Gong ZY, Zhou SX, Gu XM, Li DC, Sun ML (2003) Effect of recombinant human basic fibroblast growth factor on angiogenesis during mandible fracture healing in rabbits. Chin J Traumatol 6(4):242–244

    PubMed  CAS  Google Scholar 

  13. Grotendorst GR (1984) Alteration of the chemotactic response of NIH/3T3 cells to PDGF by growth factors, transformation, and tumor promoters. Cell 36(2):279–285

    Article  PubMed  CAS  Google Scholar 

  14. Henle P, Zimmermann G, Weiss S (2005) Matrix metalloproteinases and failed fracture healing. Bone 37(6):791–798

    Article  PubMed  CAS  Google Scholar 

  15. Horner A, Bord S, Kelsall AW, Coleman N, Compston JE (2001) Tie2 ligands angiopoietin-1 and angiopoietin-2 are coexpressed with vascular endothelial cell growth factor in growing human bone. Bone 28(1):65–71

    Article  PubMed  CAS  Google Scholar 

  16. Horner A, Bord S, Kemp P, Grainger D, Compston JE (1996) Distribution of platelet-derived growth factor (PDGF) a chain mRNA, protein, and PDGF-alpha receptor in rapidly forming human bone. Bone 19(4):353–362

    Article  PubMed  CAS  Google Scholar 

  17. Hu G, Riordan JF, Vallee BL (1994) Angiogenin promotes invasiveness of cultured endothelial cells by stimulation of cell-associated proteolytic activities. Proc Natl Acad Sci USA 91(25):12096–12100

    Article  PubMed  CAS  Google Scholar 

  18. Imai S, Kaksonen M, Raulo E, Kinnunen T, Fages C, Meng X et al (1998) Osteoblast recruitment and bone formation enhanced by cell matrix-associated heparin-binding growth-associated molecule (HB-GAM). J Cell Biol 143(4):1113–1128

    Article  PubMed  CAS  Google Scholar 

  19. Ivaska KK et al (2007) Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. J Bone Miner Res 22(8):1155–1164

    Article  PubMed  CAS  Google Scholar 

  20. Kadomatsu K, Muramatsu T (2004) Midkine and pleiotrophin in neural development and cancer. Cancer Lett 204(2):127–143

    Article  PubMed  CAS  Google Scholar 

  21. Kaspar D, Neidlinger-Wilke C, Holbein O, Claes L, Ignatius A (2003) Mitogens are increased in the systemic circulation during bone callus healing. J Orthop Res 21(2):320–325

    Article  PubMed  CAS  Google Scholar 

  22. Klaushofer K, Peterlik M (1994) Pathophysiology of fracture healing. Radiologe 34(12):709–714

    PubMed  CAS  Google Scholar 

  23. Kurdy NM, Weiss JB, Bate A (1996) Endothelial stimulating angiogenic factor in early fracture healing. Injury 27(2):143–145

    Article  PubMed  CAS  Google Scholar 

  24. Laing AJ, Dillon JP, Condon ET, Street JT, Wang JH, McGuinness AJ, Redmond HP (2007) Mobilization of endothelial precursor cells: systemic vascular response to musculoskeletal trauma. J Orthop Res 25(1):44–50

    Article  PubMed  CAS  Google Scholar 

  25. Lehmann W, Edgar CM, Wang K, Cho TJ, Barnes GL, Kakar S et al (2005) Tumor necrosis factor alpha (TNF-alpha) coordinately regulates the expression of specific matrix metalloproteinases (MMPS) and angiogenic factors during fracture healing. Bone 36(2):300–310

    Article  PubMed  CAS  Google Scholar 

  26. Lehmann W, Schinke T, Schilling AF, Catala-Lehnen P, Gebauer M, Pogoda P et al (2004) Absence of mouse pleiotrophin does not affect bone formation in vivo. Bone 35(6):1247–1255

    Article  PubMed  CAS  Google Scholar 

  27. Li G, Bunn JR, Mushipe MT, He Q, Chen X (2005) Effects of pleiotrophin (PTN) over-expression on mouse long bone development, fracture healing and bone repair. Calcif Tissue Int 76(4):299–306

    Article  PubMed  CAS  Google Scholar 

  28. Lieberman JR, Daluiski A, Einhorn TA (2002) The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am 84-A(6):1032–1044

    PubMed  Google Scholar 

  29. Maes C, Carmeliet P, Moermans K, Stockmans I, Smets N, Collen D et al (2002) Impaired angiogenesis and endochondral bone formation in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Mech Dev 111(1–2):61–73

    Article  PubMed  CAS  Google Scholar 

  30. Maglione D, Guerriero V, Viglietto G, li-Bovi P, Persico MG (1991) Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci USA 88(20):9267–9271

    Article  PubMed  CAS  Google Scholar 

  31. Mueller M, Schilling T, Minne HW, Ziegler R (1991) A systemic acceleratory phenomenon (SAP) accompanies the regional acceleratory phenomenon (RAP) during healing of a bone defect in the rat. J Bone Miner Res 6(4):401–410

    Article  PubMed  CAS  Google Scholar 

  32. Nakajima F, Ogasawara A, Goto K, Moriya H, Ninomiya Y, Einhorn TA et al (2001) Spatial and temporal gene expression in chondrogenesis during fracture healing and the effects of basic fibroblast growth factor. J Orthop Res 19(5):935–944

    Article  PubMed  CAS  Google Scholar 

  33. Narayanan AS, Engel LD, Page RC (1983) The effect of chronic inflammation on the composition of collagen types in human connective tissue. Coll Relat Res 3(4):323–334

    PubMed  CAS  Google Scholar 

  34. Nash TJ, Howlett CR, Martin C, Steele J, Johnson KA, Hicklin DJ (1994) Effect of platelet-derived growth factor on tibial osteotomies in rabbits. Bone 15(2):203–208

    Article  PubMed  CAS  Google Scholar 

  35. Petersen W, Wildemann B, Pufe T, Raschke M, Schmidmaier G (2004) The angiogenic peptide pleiotrophin (PTN/HB-GAM) is expressed in fracture healing: an immunohistochemical study in rats. Arch Orthop Trauma Surg 124(9):603–607

    Article  PubMed  Google Scholar 

  36. Probst A, Spiegel HU (1997) Cellular mechanisms of bone repair. J Invest Surg 10(3):77–86

    Article  PubMed  CAS  Google Scholar 

  37. Radomsky ML, Aufdemorte TB, Swain LD, Fox WC, Spiro RC, Poser JW (1999) Novel formulation of fibroblast growth factor-2 in a hyaluronan gel accelerates fracture healing in nonhuman primates. J Orthop Res 17(4):607–614

    Article  PubMed  CAS  Google Scholar 

  38. Saadeh PB, Mehrara BJ, Steinbrech DS, Dudziak ME, Greenwald JA, Luchs JS et al (1999) Transforming growth factor-beta1 modulates the expression of vascular endothelial growth factor by osteoblasts. Am J Physiol 277(4 Pt 1):C628–C637

    PubMed  CAS  Google Scholar 

  39. Saadeh PB, Mehrara BJ, Steinbrech DS, Spector JA, Greenwald JA, Chin GS et al (2000) Mechanisms of fibroblast growth factor-2 modulation of vascular endothelial growth factor expression by osteoblastic cells. Endocrinology 141(6):2075–2083

    Article  PubMed  CAS  Google Scholar 

  40. Shirley D, Marsh D, Jordan G, McQuaid S, Li G (2005) Systemic recruitment of osteoblastic cells in fracture healing. J Orthop Res 23(5):1013–1021

    Article  PubMed  Google Scholar 

  41. Street J, Winter D, Wang JH, Wakai A, McGuinness A, Redmond HP (2000) Is human fracture hematoma inherently angiogenic? Clin Orthop Relat Res 378:224–237

    Article  PubMed  Google Scholar 

  42. Tare RS, Oreffo RO, Clarke NM, Roach HI (2002) Pleiotrophin/osteoblast-stimulating factor 1: dissecting its diverse functions in bone formation. J Bone Miner Res 17(11):2009–2020

    Article  PubMed  CAS  Google Scholar 

  43. Tatsuyama K, Maezawa Y, Baba H, Imamura Y, Fukuda M (2000) Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone. Eur J Histochem 44(3):269–278

    PubMed  CAS  Google Scholar 

  44. Timlin M, Toomey D, Condron C, Power C, Street J, Murray P et al (2005) Fracture hematoma is a potent proinflammatory mediator of neutrophil function. J Trauma 58(6):1223–1229

    Article  PubMed  Google Scholar 

  45. Tzeng DY, Deuel TF, Huang JS, Senior RM, Boxer LA, Baehner RL (1984) Platelet-derived growth factor promotes polymorphonuclear leukocyte activation. Blood 64(5):1123–1128

    PubMed  CAS  Google Scholar 

  46. Vortkamp A, Pathi S, Peretti GM, Caruso EM, Zaleske DJ, Tabin CJ (1998) Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev 71(1–2):65–76

    Article  PubMed  CAS  Google Scholar 

  47. Weiss S, Baumgart R, Jochum M, Strasburger CJ, Bidlingmaier M (2002) Systemic regulation of distraction osteogenesis: a cascade of biochemical factors. J Bone Miner Res 17(7):1280–1289

    Article  PubMed  CAS  Google Scholar 

  48. Weiss S, Zimmermann G, Baumgart R, Kasten P, Bidlingmaier M, Henle P (2005) Systemic regulation of angiogenesis and matrix degradation in bone regeneration–distraction osteogenesis compared to rigid fracture healing. Bone 37(6):781–790

    Article  PubMed  CAS  Google Scholar 

  49. Yeh HS, Chen H, Manyak SJ, Swift RA, Campbell RA, Wang C et al (2006) Serum pleiotrophin levels are elevated in multiple myeloma patients and correlate with disease status. Br J Haematol 133(5):526–529

    Article  PubMed  CAS  Google Scholar 

  50. Zimmermann G, Henle P, Kuesswetter M, Moghaddam A, Wentzensen A, Weiss S (2005) TGF-beta1 as a marker of delayed fracture healing. Bone 36(5):779–785

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding of this investigation was provided by grants from the Deutsche Forschungsgemeinschaft, DFG (WE 2675/1-1, Pu 214/3-2, Pu 214/4-2, Pu 214/5-2, SFB 617) and a grant from the Orthopaedic University Hospital Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Henle.

Additional information

Authors Stefan Weiss and Gerald Zimmermann contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiss, S., Zimmermann, G., Pufe, T. et al. The systemic angiogenic response during bone healing. Arch Orthop Trauma Surg 129, 989–997 (2009). https://doi.org/10.1007/s00402-008-0777-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-008-0777-5

Keywords

Navigation