Skip to main content

Advertisement

Log in

Revascularisation during fracture healing with soft tissue injury

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The purpose of our study was to quantitatively assess changes in the revascularisation process in the fracture gap and in adjacent regions during the course of healing of diaphyseal fractures with and without closed soft tissue injury.

Methods

In a rat model (fracture n = 26; fracture with closed soft tissue crush n = 26) revascularisation was assessed in a long-term study with regional mapping by laser Doppler flowmetry, the healing outcome being mechanically tested after 4 weeks. Fracture and soft tissue crush were performed by modified controlled impact device.

Results

No differences in blood circulation were observed at the fracture gap between the study groups up to day 28. In the proximal region of the fracture, the blood circulation in the group with additional soft tissue trauma was down to the baseline throughout the investigation period while the values in the fracture group led to a hyperperfusion after 3 and 7 days. In the distal part at day 1, the blood flow was strongly depressed after fracture, while microcirculation with an additional soft tissue trauma showed only a moderate decline. The reduction of blood circulation in the soft tissue corresponded to the extent of trauma. Mechanical testing demonstrated no significant difference in failure load or in flexural rigidity.

Conclusion

Our results indicate that damage severe soft tissue does not adversely affect the fracture healing process. Furthermore, the present findings suggest that a partly destroyed bone–soft tissue interaction resulting in only a temporary and slight reduction of the extraosseous blood supply might have no deteriorating effect on fracture healing outcome. A possible delay in healing is not observed during the first 4 weeks. Therefore, soft tissue damage without destruction of the bone–soft tissue interface is likely to have only a limited effect on fracture healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a
Fig. 1b
Fig. 1c
Fig. 1d

Similar content being viewed by others

References

  1. Bonnarens F, Einhorn TA (1984) Production of a standard closed fracture in laboratory animal bone. J Orthop Res 2:97–101

    Article  PubMed  CAS  Google Scholar 

  2. Bornmyr S, Svensson H, Lilja B, Sundkvist G (1997) Skin temperature changes and changes in skin blood flow monitored with laser Doppler flowmetry and imaging: a methodological study in normal humans. Clin Physiol 17:71–81

    Article  PubMed  CAS  Google Scholar 

  3. Bouletreau PJ, Warren SM, Spector JA, Peled ZM, Gerrets RP, Greenwald JA, Longaker MT (2002) Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast Reconstr Surg 109:2384–2397

    Article  PubMed  Google Scholar 

  4. Brinker MR, Bailey DE Jr (1997) Fracture healing in tibia fractures with an associated vascular injury. J Trauma 42:11–19

    PubMed  CAS  Google Scholar 

  5. Bumann M, Henke T, Gerngross H, Claes L, Augat P (2003) Influence of haemorrhagic shock on fracture healing. Langenbeck’s Arch Surg/Deutsche Gesellschaft fur Chirurgie 388:331–338

    Google Scholar 

  6. Claes L, Grass R, Schmickal T, Kisse B, Eggers C, Gerngross H, Mutschler W, Arand M, Wintermeyer T, Wentzensen A (2002) Monitoring and healing analysis of 100 tibial shaft fractures. Langenbeck’s Arch Surg/Deutsche Gesellschaft fur Chirurgie 387:146–152

    CAS  Google Scholar 

  7. Claes L, Maurer-Klein N, Henke T, Gerngross H, Melnyk M, Augat P (2006) Moderate soft tissue trauma delays new bone formation only in the early phase of fracture healing. J Orthop Res 24:1178–1185

    Article  PubMed  Google Scholar 

  8. Edwards CC, Simmons SC, Browner BD, Weigel MC (1988) Severe open tibial fractures. Results treating 202 injuries with external fixation. Clin Orthop Relat Res 230:98–115

    PubMed  Google Scholar 

  9. Einhorn TA (1995) Enhancement of fracture-healing. J Bone Joint Surg Am 77:940–956

    PubMed  CAS  Google Scholar 

  10. Grundnes O, Reikeras O (1993) The role of hematoma and periosteal sealing for fracture healing in rats. Acta Orthop Scand 64:47–49

    PubMed  CAS  Google Scholar 

  11. Gustilo RB, Merkow RL, Templeman D (1990) The management of open fractures. J Bone Joint Surg Am 72:299–304

    PubMed  CAS  Google Scholar 

  12. Heppenstall RB, Goodwin CW, Brighton CT (1976) Fracture healing in the presence of chronic hypoxia. J Bone Joint Surg Am 58:1153–1156

    PubMed  CAS  Google Scholar 

  13. Hupel TM, Aksenov SA, Schemitsch EH (1998) Muscle perfusion after intramedullary nailing of the canine tibia. J Trauma 45:256–262

    PubMed  CAS  Google Scholar 

  14. Janssen GH, Tangelder GJ, Oude Egbrink MG, Reneman RS (1997) Different effects of anesthetics on spontaneous leukocyte rolling in rat skin. Int J Microcirc Clin Exp 17:305–313

    Article  PubMed  CAS  Google Scholar 

  15. Krettek C, Schandelmaier P, Tscherne H (1995) Nonreamed interlocking nailing of closed tibial fractures with severe soft tissue injury. Clin Orthop Relat Res 345:34–47

    Google Scholar 

  16. Landry PS, Marino AA, Sadasivan KK, Albright JA (2000) Effect of soft tissue trauma on the early periosteal response of bone to injury. J Trauma 48:479–483

    PubMed  CAS  Google Scholar 

  17. McKibbin B (1978) The biology of fracture healing in long bones. J Bone Joint Surg 60–B:150–162

    Google Scholar 

  18. Menth-Chiari WA, Curl WW, Paterson-Smith B, Smith TL (1999) Microcirculation of striated muscle in closed soft tissue injury: effect on tissue perfusion, inflammatory cellular response and mechanisms of cryotherapy. A study in rat by means of laser Doppler flow-measurements and intravital microscopy. Unfallchirurg 102:691–699

    Article  PubMed  CAS  Google Scholar 

  19. Mizuno K, Mineo K, Tachibana T, Sumi M, Matsubara T, Hirohata K (1990) The osteogenetic potential of fracture haematoma. Subperiosteal and intramuscular transplantation of the haematoma. J Bone Joint Surg 72:822–829

    CAS  Google Scholar 

  20. Morisaki H, Aoyama Y, Shimada M, Ochiai R, Takeda J (1998) Leucocyte distribution during sevoflurane anaesthesia. Br J Anaesth 80:502–503

    PubMed  CAS  Google Scholar 

  21. Notzli HP, Swiontkowski MF, Thaxter ST, Carpenter GK 3rd, Wyatt R (1989) Laser Doppler flowmetry for bone blood flow measurements: helium–neon laser light attenuation and depth of perfusion assessment. J Orthop Res 7:413–424

    Article  PubMed  CAS  Google Scholar 

  22. Oestern HJ, Tscherne H (1983) Pathophysiology and classification of soft tissue damage in fractures. Orthopade 12:2–8

    PubMed  CAS  Google Scholar 

  23. Ozaki A, Tsunoda M, Kinoshita S, Saura R (2000) Role of fracture hematoma and periosteum during fracture healing in rats: interaction of fracture hematoma and the periosteum in the initial step of the healing process. J Orthop Sci 5:64–70

    Article  PubMed  CAS  Google Scholar 

  24. Reichert IL, McCarthy ID, Hughes SP (1995) The acute vascular response to intramedullary reaming. Microsphere estimation of blood flow in the intact ovine tibia. J Bone Joint Surg 77:490–493

    CAS  Google Scholar 

  25. Reynders P, Becker J, Broos P (1998) The osteogenic potential of free periosteal autografts in tibial fractures with severe soft tissue damage: an experimental study. Acta Orthop Belg 64:184–192

    PubMed  CAS  Google Scholar 

  26. Rhinelander FW (1974) Tibial blood supply in relation to fracture healing. Clin Orthop Relat Res 105:34–81

    Article  PubMed  Google Scholar 

  27. Richards RR, Schemitsch EH (1989) Effect of muscle flap coverage on bone blood flow following devascularization of a segment of tibia: an experimental investigation in the dog. J Orthop Res 7:550–558

    Article  PubMed  CAS  Google Scholar 

  28. Rommens PM, Claes P, De Boodt P, Stappaerts KH, Broos PL (1994) Therapeutic procedure and long-term results in tibial pilon fracture in relation to primary soft tissue damage. Unfallchirurg 97:39–46

    PubMed  CAS  Google Scholar 

  29. Schaser KD, Vollmar B, Menger MD, Schewior L, Kroppenstedt SN, Raschke M, Lubbe AS, Haas NP, Mittlmeier T (1999) In vivo analysis of microcirculation following closed soft tissue injury. J Orthop Res 17:678–685

    Article  PubMed  CAS  Google Scholar 

  30. Schaser KD, Zhang LL, Mittlmeier T, Ostapowicz D, Schmidtmaier G, Duda G, Haas NP, Bail HJ (2004) Effect of soft tissue damage on fracture healing: intravital microscopic and biomechanical investigations in rats. In: Proceedings of the 50th annual meeting of the orthopaedic research society, 120

  31. Schemitsch EH, Kowalski MJ, Swiontkowski MF (1994) Evaluation of a laser Doppler flowmetry implantable fiber system for determination of threshold thickness for flow detection in bone. Calcif Tissue Int 55:216–222

    Article  PubMed  CAS  Google Scholar 

  32. Schemitsch EH, Weinberg JA, McKee MD, Richards RR (1997) The relative importance of intramedullary, intracortical, and extraosseous soft tissue blood flow to the repair of devascularized canine tibial cortex. Ann Plast Surg 38:623–631

    Article  PubMed  CAS  Google Scholar 

  33. Smith AL (1975) Effect of anesthetics and oxygen deprivation on brain blood flow and metabolism. Surg Clin North Am 55:819–836

    PubMed  CAS  Google Scholar 

  34. Steinbrech DS, Mehrara BJ, Saadeh PB, Chin G, Dudziak ME, Gerrets RP, Gittes GK, Longaker MT (1999) Hypoxia regulates VEGF expression and cellular proliferation by osteoblasts in vitro. Plast Reconstr Surg 104:738–747

    Article  PubMed  CAS  Google Scholar 

  35. Street J, Winter D, Wang JH, Wakai A, McGuinness A, Redmond HP (2000) Is human fracture hematoma inherently angiogenic? Clin Orthop Relat Res 378:224–237

    Article  PubMed  Google Scholar 

  36. Swiontkowski MF, Schlehr F, Collins JC, Sanders R, Pou A (1988) Comparison of two laser Doppler flowmetry systems for bone blood flow analysis. Calcif Tissue Int 43:103–107

    Article  PubMed  CAS  Google Scholar 

  37. Trueta J (1974) Blood supply and the rate of healing of tibial fractures. Clin Orthop Relat Res 105:11–26

    Article  PubMed  Google Scholar 

  38. Utvag SE, Grundnes O, Reikeraos O (1996) Effects of periosteal stripping on healing of segmental fractures in rats. J Orthop Trauma 10:279–284

    Article  PubMed  CAS  Google Scholar 

  39. Utvag SE, Grundnes O, Reikeras O (1998) Effects of lesion between bone, periosteum and muscle on fracture healing in rats. Acta Orthop Scand 69:177–180

    PubMed  CAS  Google Scholar 

  40. Utvag SE, Grundnes O, Reikeras O (1999) Early muscle-periosteal lesion inhibits fracture healing in rats. Acta Orthop Scand 70:62–66

    Article  PubMed  CAS  Google Scholar 

  41. Utvag SE, Iversen KB, Grundnes O, Reikeras O (2002) Poor muscle coverage delays fracture healing in rats. Acta Orthop Scand 73:471–474

    Article  PubMed  Google Scholar 

  42. Utvag SE, Grundnes O, Rindal DB, Reikeras O (2003) Influence of extensive muscle injury on fracture healing in rat tibia. J Orthop Trauma 17:430–435

    Article  PubMed  Google Scholar 

  43. Whiteside LA, Lesker PA (1978) The effects of extraperiosteal and subperiosteal dissection. II. On fracture healing. J Bone Joint Surg Am 60:26–30

    PubMed  CAS  Google Scholar 

  44. Zhang L, Bail H, Mittlmeier T, Haas NP, Schaser KD (2003) Immediate microcirculatory derangements in skeletal muscle and periosteum after closed tibial fracture. J Trauma 54:979–985

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Melnyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melnyk, M., Henke, T., Claes, L. et al. Revascularisation during fracture healing with soft tissue injury. Arch Orthop Trauma Surg 128, 1159–1165 (2008). https://doi.org/10.1007/s00402-007-0543-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-007-0543-0

Keywords

Navigation