Skip to main content

Advertisement

Log in

The effect of low intensity ultrasound and bioabsorbable self-reinforced poly-L-lactide screw fixation on bone in lateral malleolar fractures

  • Original Article
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

There are no previous reports of low intensity pulsed ultrasound therapy in connection with bioabsorbable fracture fixation. In this randomised, prospective, double-blind and placebo-controlled study, the effects of ultrasound on bone mineral density and bone healing were examined in lateral malleolar fractures fixed with a bioabsorbable self-reinforced poly-L-lactide screw (SR-PLLA).

Materials and methods

Thirty adult patients with SR-PLLA screw-fixed lateral malleolar fracture underwent ultrasound therapy 20 min daily for 6 weeks. Half of the patients were provided randomly with a sham ultrasound device. Bone mineral density and bone healing were assessed by dual-energy X-ray absorptiometry (DXA) and by radiographs.

Results

Bone mineral density of the fractured lateral malleolus tended to increase slightly during 12 weeks of follow-up. The increase was symmetrical and statistically non-significant between the ultrasound and non-ultrasound group. All the fractures healed uneventfully. The biocompatibility of the bioabsorbable SR-PLLA fixation device and low intensity pulsed ultrasound was good. Despite the slight tendency for more frequent callus formation in the ultrasound group, no statistically significant effect of low intensity pulsed ultrasound on lateral malleolar fracture healing could be observed.

Conclusion

It was not possible to observe any statistically significant effect of low intensity pulsed ultrasound on lateral malleolar fracture healing in this study. Further studies are needed to examine the role of ultrasound therapy in the healing of fractures treated with bioabsorbable fixation devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Azyma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S (2001) Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on various cellular reactions in the fracture callus. J Bone Miner Res 16: 671–680

    CAS  PubMed  Google Scholar 

  2. Bucholz RW, Henry S, Henley MB (1994) Fixation with bioabsorbable screws for the treatment of fractures of the ankle. J Bone Join Surg Am 76: 319–324

    Google Scholar 

  3. Böstman O, Vainionpää S, Hirvensalo E, Mäkelä A, Vihtonen K, Törmälä P, Rokkanen P (1987) Biodegradable internal fixation for malleolar fractures. A prospective randomized trial. J Bone Joint Surg Br 69: 615–619

    CAS  PubMed  Google Scholar 

  4. Cook SD, Ryaby JP, McCabe J, Frey JJ, Heckman JD, Kristiansen TK (1997) Acceleration of tibia and distal radius fracture healing in patients who smoke. Clin Orthop 337: 198–207

    Google Scholar 

  5. Emami A, Petrén-Mallmin M, Larsson S (1999) No effect of low-intensity ultrasound on healing time of intramedullary fixed tibial fractures. J Orthop Trauma 13: 252–257

    Google Scholar 

  6. Gilding DK (1981) Biodegradable polymers. In: Williams DF (ed) Biocompatibility of clinical implant materials, vol 2. CRC Press, Boca Raton, pp 209–232

  7. Hadjiargyrou M, McLeod K, Ryaby JP, Rubin C (1998) Enhancement of fracture healing by low intensity ultrasound. Clin Orthop 355S: 216–229

    Google Scholar 

  8. Handolin L, Pohjonen T, Partio EK, Arnala I, Törmälä P, Rokkanen P (2002) The effects of low-intensity pulsed ultrasound on bioabsorbable self-reinforced poly-L-lactide screws. Biomaterials 23: 2733–2736

    Google Scholar 

  9. Heckman JD, Ryaby JB, McCabe J, Frey JJ, Kilcoyne RF (1994) Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am 76: 26–34

    CAS  PubMed  Google Scholar 

  10. Hollinger JO, Battistone GC (1986) Biodegradable bone repair materials. Clin Orthop 207: 290–305

    Google Scholar 

  11. Ingle B, Hay S, Bottjer H, Eastell R (1999) Changes in bone mass and bone turnover following ankle fracture. Osteoporosis Int 10: 408–415

    Google Scholar 

  12. Kristiansen TK, Ryaby JP, McCabe J, Frey JJ, Roe LR (1997) Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study. J Bone Joint Surg Am 79: 961–973

    CAS  PubMed  Google Scholar 

  13. Leung KS, Lee WS, Tsui HF, Liu PP, Cheung WH (2004) Complex tibial fracture outcome following treatment with low-intensity pulsed ultrasound. Ultrasound Med Biol 3: 389–395

    Google Scholar 

  14. Partio E, Böstman O, Hirvensalo E, Vainionpää S, Vihtonen K, Pätiälä H, Törmälä P, Rokkanen P (1992) Self-reinforced absorbable screws in the fixation of displaced ankle fractures: A prospective clinical study of 152 patients. J Orthop Trauma 6: 209–215

    Google Scholar 

  15. Pilla AA, Mont MA, Nasser PR, Khan SA, Figueiredo M, Kaufman JJ, Siffert RS (1990) Non-invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit. J Orthop Trauma 4: 246–253

    CAS  PubMed  Google Scholar 

  16. Pohjonen T, Helevirta P, Törmälä P, Koskikare K, Pätiälä H, Rokkanen P (1997) Strength retention of self-reinforced poly-L-lactide screws. A comparison of compression moulded and machine cut screws. J Mater Sci Mater Med 8: 311–320

    Google Scholar 

  17. Rokkanen P, Böstman O, Vainionpää S, Vihtonen K, Törmälä P, Laiho J, Kilpikari J, Tamminmäki M (1985) Biodegradable implants in fracture fixation: Early results of treatment of fractures of the ankle. Lancet 1: 1422–1424

    Article  CAS  PubMed  Google Scholar 

  18. Rokkanen P, Böstman O, Hirvensalo E, Mäkelä EA, Partio EK, Pätiälä H, Vainionpää S, Vihtonen K, Törmälä P (2000) Bioabsorbable fixation in orthopaedic surgery and traumatology. Biomaterials 21: 2607–2613

    CAS  PubMed  Google Scholar 

  19. Rue JP, Armstrong DW 3rd, Frassica FJ, Deafenbaugh M, Wilckens JH (2004) The effect of pulsed ultrasound in the treatment of tibial stress fractures. Orthopedics 11: 1192–1195

    Google Scholar 

  20. Sun JS, Hong RC, Chang WH, Chen LT, Lin FH, Liu HC (2001) In vitro effects of low-intensity ultrasound stimulation on the bone cells. J Biomed Mater Res 57: 449–456

    Article  CAS  PubMed  Google Scholar 

  21. Wang SJ, Lewallen DG, Bolander ME, Chao EYS, Ilstrup DM, Greenleaf JF (1994) Low-intensity ultrasound treatment increases strength in a rat femoral fracture model. J Orthop Res 12: 40–47

    CAS  PubMed  Google Scholar 

  22. Yang KH, Parvizi J, Wang SJ, Lewallen D, Kinnick R, Greenleaf J, Bolander M (1996) Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model. J Orthop Res 14: 802–809

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Exogen Inc. for providing the ultrasound devices for this study. This study was supported by research grants from the Foundation for Orthopaedical and Traumatological Research in Finland, Helsinki University Central Hospital, and the Academy of Finland. The experiments comply with the current laws of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauri Handolin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handolin, L., Kiljunen, V., Arnala, I. et al. The effect of low intensity ultrasound and bioabsorbable self-reinforced poly-L-lactide screw fixation on bone in lateral malleolar fractures. Arch Orthop Trauma Surg 125, 317–321 (2005). https://doi.org/10.1007/s00402-005-0801-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-005-0801-y

Keywords

Navigation