Skip to main content

Advertisement

Log in

α-Smooth muscle actin containing contractile fibroblastic cells in human knee arthrofibrosis tissue

Winner of the AGA-DonJoy Award 2003

  • Original Article
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Primary arthrofibrosis is of major concern after joint trauma or knee ligament surgery. The underlying mechanism in detail remains unclear. Highly differentiated fibroblastic cells, so-called myofibroblasts, express the actin isoform α-smooth muscle actin (ASMA) and have been found to play a major role in tissue contraction during wound healing and organ fibrosis. We therefore studied the expression of myofibroblasts in human primary knee arthrofibrosis tissue.

Materials and methods

Tissue samples were taken from the infrapatellar fat pad and intercondylar region of nine patients who underwent revision surgery due to arthrofibrosis after anterior cruciate ligament (ACL) reconstruction (study group). Control tissue was taken from five patients who underwent primary ACL reconstruction (control group I) and from eight patients, who underwent second-look arthroscopy after primary ACL reconstruction (control group II). ASMA containing fibroblasts were immunostained with a monoclonal antibody. Histomorphometry was performed for total cell amount, ASMA containing fibroblasts, and vessel cross-sections.

Results

The arthrofibrosis group showed a tenfold higher amount of ASMA containing myofibroblasts (23.4% vs. 2.3%) than in control group I. There was a significantly higher total cell count and lower vessel density than in control group I. Control group II showed an upregulation of myofibroblasts almost five times that in control group I; nevertheless there was no evidence of scar formation or tissue fibrosis.

Conclusions

Myofibroblasts are responsible for scar tissue contraction during wound healing. In arthrofibrosis tissue fibroblast contraction may be involved in tissue fibrosis and contraction with consecutive loss of motion. We found that myofibroblasts are upregulated in arthrofibrosis tissue. ACL reconstruction itself caused an up regulation of myofibroblast content. Nevertheless these patients did not show any clinical or histological signs of arthrofibrosis. Thus it is reasonable to assume that the ratio of myofibroblasts and total cell amount in connective tissue are responsible for the onset of arthrofibrosis. Address the expression of this highly differentiated cell type may therefore present a target for future therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 a
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adler K, Craighead J, Vallyathan N, Evans J (1981) Actin-containing cell in human pulmonary fibrosis. Am J Pathol 102:427–437

    CAS  PubMed  Google Scholar 

  2. Aglietti P, Buzzi R, De Felice R, Paolini G, Zaccherotti G (1995) Results of surgical treatment of arthrofibrosis after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 3:83–88

    CAS  PubMed  Google Scholar 

  3. Atkinson T, Atkinson P, Mendenhall H, Haut R (1998) Patellar tendon and infrapatellar fat pad healing after harvest of an ACL graft. J Surg Res 79:25–30

    Article  CAS  PubMed  Google Scholar 

  4. Baur P, Parks D (1983) The myofibroblast anchoring strand: the fibronectin connection in wound healing and the possible loci of collagen fibril assembly. J Trauma 23:853–862

    CAS  PubMed  Google Scholar 

  5. Border W, Noble N (1994) Transforming growth factor b in tissue fibrosis. N Engl J Med 331:1286–1292

    Article  CAS  PubMed  Google Scholar 

  6. Border WA, Ruoslahti E (1992) Transforming growth factor-b in disease: the dark side of tissue repair. J Clin Invest 90:1–7

    CAS  PubMed  Google Scholar 

  7. Bosch U, Zeichen J, Lobenhoffer P, Albers I, van Griensven M (1999) [Arthrofibrosis—A chronic inflammatory process?]. Arthroskopie 12:117–120

    Article  Google Scholar 

  8. Bosch U, Zeichen J, Lobenhoffer P, Skutek M, van Griensven M (1999) [Etiology of arthrofibrosis]. Arthroskopie 12:215–221

    Article  Google Scholar 

  9. Bosch U, Zeichen J, Skutek M, Haeder L, van Griensven M (2001) Arthrofibrosis is the result of a T cell mediated immune response. Knee Surg Sports Traumatol Arthrosc 9:282–289

    Article  CAS  PubMed  Google Scholar 

  10. Cosgarea A, Dehaven K, Lovelock J (1994) The surgical treatment of arthrofibrosis of the knee. Am J Sports Med 22:184–191

    CAS  PubMed  Google Scholar 

  11. Darby I, Skalli O, Gabbiani G (1990) Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63:21–29

    CAS  PubMed  Google Scholar 

  12. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-b1 induces a-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103–111

    Article  CAS  PubMed  Google Scholar 

  13. Eddy R, Petro J, Tomasek J (1988) Evidence of the nonmuscle nature of the “Myofibroblast” of granulation tissue and hypertrophic scar. Am J Pathol 130:252–260

    CAS  PubMed  Google Scholar 

  14. Estes J, Vande Berg J, Adzick N, McGillivray T, Desmouliere A, Gabbiani G (1994) Phenotypic and functional features of myofibroblasts in sheep fetal wounds. Differentiation 56:173–181

    Article  CAS  PubMed  Google Scholar 

  15. Faryniarz DA, Chaponnier C, Gabbiani G, Yannas IV, Spector M (1996) Myofibroblasts in the healing lapine medial collateral ligament: possible mechanisms of contraction. J Orthop Res 14:228–237

    CAS  PubMed  Google Scholar 

  16. Fukushima K, Badlani N, Usas A, Riano F, Fu F, Huard J (2001) The use of an antifibrosis agent to improve muscle recovery after laceration. Am J Sports Med 29:394–402

    CAS  PubMed  Google Scholar 

  17. Gabbiani G, Majno G (1972) Dupuytren’s contracture: fibroblast contraction? An ultrastructural study. Am J Pathol 66:131–146

    CAS  PubMed  Google Scholar 

  18. Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR, Majno G (1972) Granulation tissue as a contractile organ. A study of structure and function. J Exp Med 135:719–734

    Article  CAS  PubMed  Google Scholar 

  19. Gögüs A, Lobenhoffer P (1993) [Arthroscopic therapy of arthrofibrosis of the knee joint]. Unfallchirurg 96:100–108

    PubMed  Google Scholar 

  20. Harner C, Irrgang J, Paul J, Dearwater S, Fu F (1992) Loss of motion after anterior cruciate ligament reconstruction. Am J Sports Med 20:499–506

    CAS  PubMed  Google Scholar 

  21. Harris A, Stopak D, Wild P (1981) Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290:249–251

    CAS  PubMed  Google Scholar 

  22. Lobenhoffer H, Bosch U, Gerich T (1996) Role of posterior capulotomy for the treatment of extension deficits of the knee. Knee Surg Sports Traumatol Arthrosc 4:237–241

    CAS  PubMed  Google Scholar 

  23. Mariani P, Santori N, Rovere P, Della Rocca C, Adriani E (1997) Histological and structural study of the adhesive tissue in knee fibroarthrosis: a clinical-pathological correlation. Arthroscopy 13:313–318

    Article  CAS  PubMed  Google Scholar 

  24. Martin P (1997) Wound healing: aiming for perfect skin regeneration. Science 276:75–86

    Article  CAS  PubMed  Google Scholar 

  25. Murakami S, Muneta T, Ezura Y, Furuya K, Yamamoto H (1997) Quantitative analysis of synovial fibrosis in the infrapatellar fat pad before and after ACL reconstruction. Am J Sports Med 25:29–34

    CAS  PubMed  Google Scholar 

  26. Nagle RB, Kneiser MR, Bulger RE, Benditt EP (1973) Induction of smooth muscle characteristics in renal interstitial fibroblasts during obstructive nephropathy. Lab Invest 29:422–427

    CAS  PubMed  Google Scholar 

  27. Oda D, Gown A, Vande Berg J, Stern R (1988) The fibroblast-like nature of myofibroblasts. Exp Mol Pathol 49:316–329

    Article  CAS  PubMed  Google Scholar 

  28. Parisien J (1988) The role of arthroscopy in the treatment of postoperative fibroarthrosis of the knee joint. Clin Orthop 229:185–192

    PubMed  Google Scholar 

  29. Paulos L, Rosenberg T, Drawbert, Manning J, Abbott P (1987) Infrapatellar contracture syndrome: an unrecognized cause of knee stiffness with patella entrapment and patella infera. Am J Sports Med 15:331–341

    CAS  PubMed  Google Scholar 

  30. Paulos L, Wnorowski D, Greenwald A (1994) Infrapatellar contracture syndrome: diagnosis, treatment and longterm follow-up. Am J Sports Med 22:440–449

    CAS  PubMed  Google Scholar 

  31. Ronnov-Jessen L, Petersen OW (1993) Induction of a-smooth muscle actin by transforming growth factor-b1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasis. Lab Invest 68:696–707

    CAS  PubMed  Google Scholar 

  32. Rudolph R, McLure W, Woodward (1979) Contractile fibroblasts in chronic alcoholic cirrhosis. Gastroenterology 76:704–709

    Google Scholar 

  33. Sappino A, Schürch W, Gabbiani G (1990) Biology of disease—differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as markers of phenotypic modulations. Lab Invest 63:144–161

    CAS  PubMed  Google Scholar 

  34. Schürch W, Seemeyer T, Gabbiani G (1998) The myofibroblast: a quarter century after its discovery. Am J Surg Pathol 22:141–147

    Article  PubMed  Google Scholar 

  35. Serini G, Gabbiani G (1999) Mechanisms of myofibroblast activity and phenotypic modulation. Exp Cell Res 250:273–283

    Article  CAS  PubMed  Google Scholar 

  36. Shelbourne K, Trumper R (1997) Preventing anterior knee pain after anterior cruciate ligament reconstruction. Am J Sports Med 25:41–47

    CAS  PubMed  Google Scholar 

  37. Shelbourne KD, Wilckens JH, Mollabashy A, DeCarlo M (1991) Arthrofibrosis in acute anterior cruciate ligament reconstruction. The effect of timing of reconstruction and rehabilitation. Am J Sports Med 19:332–336

    CAS  PubMed  Google Scholar 

  38. Shelbourne KD, Patel DV (1999) Treatment of limited motion after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 7:85–92

    Article  CAS  PubMed  Google Scholar 

  39. Skalli O, Pelte M, Peclet M, Gabbiani G, Gugliotta P, Bussolati, Ravazzola M, Orci L (1989) Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J Histochem Cytochem 37:315–321

    CAS  PubMed  Google Scholar 

  40. Skalli O, Ropraz P, Trzeciak, Benzonana G, Gillessen D, Gabbiani G (1986) A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103:2787–2796

    Article  CAS  PubMed  Google Scholar 

  41. Skalli O, Schürch W, Seemeyer T, Lagace R, Montandon, Pittet B, Gabbiani G (1989) Myofibroblasts from diverse pathologic settings are heterogeneous in their content of actin isoforms and intermediate filament proteins. Lab Invest 60:275–285

    CAS  PubMed  Google Scholar 

  42. Sporn MB, Roberts A (1992) Transforming growth factor-β: recent progress and new challenges. J Cell Biol 119:1017–1021

    Article  CAS  PubMed  Google Scholar 

  43. Stopak D, Harris A (1982) Connective tissue morphogenesis by fibroblast traction. I. Tissue culture observations. Dev Biol 90:383–398

    CAS  PubMed  Google Scholar 

  44. Weiler A, Unterhauser FN, Bail HJ, Huning M, Haas NP (2002) Alpha-smooth muscle actin is expressed by fibroblastic cells of the ovine anterior cruciate ligament and its free tendon graft during remodeling. J Orthop Res 20:310–317

    Article  CAS  PubMed  Google Scholar 

  45. Zeichen J, van Griensven M, Albers I, Lobenhoffer P, Bosch U (1999) Immunohistochemical localization of collagen VI in arthrofibrosis. Arch Orthop Trauma Surg 119:315–318

    Article  CAS  PubMed  Google Scholar 

  46. Zhang K, Rekhter M, Gordon D, Phan S (1994) Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am J Pathol 145:114–125

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank N. Unterhauser.

Additional information

Winner of the AGA-DonJoy Award 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unterhauser, F.N., Bosch, U., Zeichen, J. et al. α-Smooth muscle actin containing contractile fibroblastic cells in human knee arthrofibrosis tissue. Arch Orthop Trauma Surg 124, 585–591 (2004). https://doi.org/10.1007/s00402-004-0742-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-004-0742-x

Keywords

Navigation