Skip to main content
Log in

On the validity of continuous media theory for plastic materials in magnetorheological fluids under slow compression

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this manuscript, we address the long-standing question of whether a single theory for model plastic fluids is suitable to deal with the unidirectional compression problem in magnetorheological (MR) fluids. We present an extensive experimental investigation of the performance of MR fluids in slow-compression, no-slip, constant-volume squeeze mode under different magnetic field strengths (0–354 kA/m), dispersing medium viscosities (20–500 mPa·s) and particle concentrations (5–30 vol%). Normal force versus compressive strain curves reasonably collapse when normalizing by the low-strain normal force. Deviations from the squeeze flow theory for field-responsive yield stress fluids are associated to microstructural rearrangements under compression in good agreement with the so-called squeeze strengthening effect. Yield compressive stresses are found to scale as \(\sim \eta^{0.33\, }\phi ^{2.0\, }\)H2.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andablo-Reyes E, Hidalgo-Álvarez R, de Vicente J (2010) A method for the estimation of the film thickness and plate tilt angle in thin film misaligned plate–plate rheometry. J Non-Newton Fluid Mech 165:1419–1421

    Article  CAS  Google Scholar 

  • Andablo-Reyes E, Hidalgo-Álvarez R, de Vicente J (2011) Erratum to “A method for the estimation of the film thickness and plate tilt angle in thin film misaligned plate–plate rheometry. J Non-Newton Fluid Mech 165:1419–1421 (2010)”. J Non-Newton Fluid Mech 166:882–882

    Article  CAS  Google Scholar 

  • Carlson JD (2007) MR fluid technology—commercial status in 2006. In: Gordaninejad F, Graeve OA, Fuchs A, York D (eds) Proceedings of the 10th international conference on electrorheological fluids and magnetorheological suspensions. World Scientific, Singapore, pp 389–395

    Chapter  Google Scholar 

  • Chu SH, Lee SJ, Ahn KH (2000) An experimental study on the squeezing flow of electrorheological suspensions. J Rheol 44(1):105–120

    Article  CAS  Google Scholar 

  • Covey GH, Stanmore BR (1981) Use of the parallel-plate plastometer for the characterization of viscous fluids with a yield stress. J Non-Newton Fluid Mech 8:249–260

    Article  CAS  Google Scholar 

  • de Vicente J, Klingenberg DJ, Hidalgo-Álvarez R (2011a) Magnetorheological fluids: a review. Soft Matter 7:3701–3710

    Article  Google Scholar 

  • de Vicente J, Ruiz-López JA, Andablo-Reyes E, Segovia-Gutiérrez JP, Hidalgo-Álvarez R (2011b) Squeeze flow magnetorheology. J Rheol 55:753–779

    Article  Google Scholar 

  • El Wahed AK, Sproston JL, Stanway R (1998) The performance of an electrorheological fluid in dynamic squeeze flow under constant voltage and constant field. J Phys D: Appl Phys 31:2964–2974

    Article  Google Scholar 

  • Ginder JM, Davis L, Elie L (1996) Rheology of magnetorheological fluids: models and measurements. Int J Mod Phys B 10:3293–3303

    Article  CAS  Google Scholar 

  • Gstöttenbauer N, Kainz A, Manhartsgruber B, Scheidl R (2008) Experimental and numerical studies of squeeze mode behaviour of magnetic fluid. Proc IMechE C 222:2395–2407

    Google Scholar 

  • Havelka KO, Pialet JW (1996) Electrorheological technology: the future is now. CHEMTECH 36:36–45

    Google Scholar 

  • Klingenberg DJ, Ulicny JC, Smith AL (2007) Effects of body forces on the structure and rheology of ER and MR fluids. Int J Mod Phys B 21:4841–4848

    Article  CAS  Google Scholar 

  • Laun HM, Schmidt G, Gabriel C (2008) Reliable plate–plate MRF magnetorheometry based on validated radial magnetic flux density profile simulations. Rheol Acta 47:1049–1059

    Article  CAS  Google Scholar 

  • Lynch R, Meng Y, Filisko FE (2006) Compression of dispersions to high stress under electric fields: effects of concentration and dispersing oil. J Colloid Interface Sci 297:322–328

    Article  CAS  Google Scholar 

  • Mazlan SA, Ekreem NB, Olabi AG (2007) The performance of magnetorheological fluid in squeeze mode. Smart Mater Struct 16:1678–1682

    Article  Google Scholar 

  • Mazlan SA, Ekreem NB, Olabi AG (2008) An investigation of the behaviour of magnetorheological fluids in compression mode. J Mater Process Tech 201:780–785

    Article  CAS  Google Scholar 

  • McIntyre EC, Filisko FE (2007) Squeeze flow of electrorheological fluids under constant volume. J Intell Mater Syst Struct 18:1217–1220

    Article  Google Scholar 

  • McIntyre EC, Filisko FE (2010) Filtration in electrorheological suspensions related to the Peclet number. J Rheol 54(3):591–603

    Article  CAS  Google Scholar 

  • Meng Y, Filisko FE (2005) Unidirectional compression of electrorheological fluids in electric fields. J Appl Phys 98:074901

    Article  Google Scholar 

  • Olabi AG, Grunwald A (2007) Design and application of magneto-rheological fluid. Mater Des 28:2658–2664

    Article  CAS  Google Scholar 

  • Park BJ, Fang FF, Choi HJ (2010) Magnetorheology: materials and application. Soft Matter 6:5246–5253

    Article  CAS  Google Scholar 

  • Scott JR (1929) Trans Inst Rubber Ind 4:347–347

    Google Scholar 

  • See H (2003) Field dependence of the response of a magnetorheological suspension under steady shear flow and squeezing flow. Rheol Acta 42:86–92

    Article  CAS  Google Scholar 

  • Stanway R, Sproston JL, Stevens NG (1987) Non-linear modelling of an electro-rheological vibration damper. J Electrostatics 20:167–184

    Article  Google Scholar 

  • Tang X, Zhang X, Tao R, Rong Y (2000) Structure-enhanced yield stress of magnetorheological fluids. J Appl Phys 87(5):2634–2638

    Article  CAS  Google Scholar 

  • Tian Y, Meng Y, Mao H, Wen S (2002a) Electrorheological fluid under elongation, compression, and shearing. Phys Rev E 65:031507

    Article  CAS  Google Scholar 

  • Tian Y, Meng Y, Mao H, Wen S (2002b) Mechanical property of electrorheological fluid under step compression. J Appl Phys 92:6875–6879

    Article  CAS  Google Scholar 

  • Tian Y, Meng Y, Wen S (2003a) Particulate volume effect in suspensions with strong electrorheological response. Mater Lett 57:2807–2811

    Article  CAS  Google Scholar 

  • Tian Y, Wen S, Meng Y (2003b) Compressions of electrorheological fluids under different initial gap distances. Phys Rev E 67:051501

    Article  Google Scholar 

  • Wen W, Huang X, Sheng P (2008) Electrorheological fluids: structures and mechanisms. Soft Matter 4:200–210

    Article  CAS  Google Scholar 

  • Williams EW, Rigby SG, Sproston JL, Stanway R (1993) Electrorheological fluids applied to an automotive engine mount. J Non-Newton Fluid Mech 49:221–238

    Article  Google Scholar 

  • Zhang XZ, Gong XL, Zhang PQ, Wang QM (2004) Study on the mechanism of the squeeze-strengthen effect in magnetorheological fluids. J Appl Phys 96(4):2359–2364

    Article  CAS  Google Scholar 

  • Zhang ML, Tian Y, Jiang JL, Zhu XL, Meng YG, Wen SZ (2009) Compression enhanced shear yield stress of electrorheological fluid. Chin Phys Lett 26(4):048301

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by MICINN MAT 2010-15101 project (Spain), by the European Regional Development Fund (ERDF) and by Junta de Andalucía P10-FQM-5977, P10-RNM-6630 and P11-FQM-7074 projects (Spain). J.A.R.-L. acknowledges financial support by the “Ministerio de Educación: Becas del Programa de Formación del Profesorado Universitario (FPU)” (AP2010-2144).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan de Vicente.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiz-López, J.A., Hidalgo-Alvarez, R. & de Vicente, J. On the validity of continuous media theory for plastic materials in magnetorheological fluids under slow compression. Rheol Acta 51, 595–602 (2012). https://doi.org/10.1007/s00397-012-0626-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0626-x

Keywords

Navigation