Skip to main content
Log in

Deformation and orientation of single droplets during shear flow: combined effects of confinement and compatibilization

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Combined effects of geometrical confinement and compatibilization on the deformation and orientation of single droplets during steady-state shear flow are investigated in a counter-rotating cell by means of microscopic observations. The model system consists of polydimethylsiloxane droplets of varying sizes and viscosities in a polyisobutylene matrix. To this system, a premade polyisobutylene–polydimethylsiloxane block copolymer is added as compatibilizer in different concentrations. For each droplet, the equilibrium interfacial tension is determined by comparing droplet axes with the predictions of the confined Minale model for uncompatibilized droplets at the appropriate degree of confinement. Although large reductions in interfacial tension are seen for all compatibilized droplets, it is shown that the effect of compatibilization on droplet deformation and orientation can efficiently be taken into account in the equilibrium capillary number. This way, for all viscosity ratios and confinement ratios, steady-state data for compatibilized and uncompatibilized droplets coincide, and agree well with the predictions of the confined Minale model at sub-critical conditions. For near-critical capillary numbers, compatibilization slightly reduces droplet deformation and postpones breakup, irrespective of the degree of confinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abbassi-Sourki F, Huneault MA, Bousmina M (2009) Effect of compatibilization on the deformation and breakup of drops in step-wise increasing shear flow. Polymer 50:645–653

    Article  CAS  Google Scholar 

  • Bazhlekov IB, Anderson PD, Meijer HEH (2006) Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. J Colloid Interface Sci 298:369–394

    Article  CAS  Google Scholar 

  • Cardinaels R, Verhulst K, Moldenaers P (2009) Influence of confinement on the steady state behavior of single droplets in shear flow for immiscible blends with one viscoelastic component. J Rheol 53:1403–1424

    Article  CAS  Google Scholar 

  • Cardinaels R, Vananroye A, Van Puyvelde P, Moldenaers P (2011) Breakup criteria for confined droplets: effects of compatibilization and component viscoelasticity. Macromol Mater Eng 296. doi:10.1002/mame.201000305

  • Christopher GF, Anna SL (2007) Microfluidic methods for generating continuous droplet streams. J Phys, D Appl Phys 40:R319–R336

    Article  Google Scholar 

  • De Bruijn RA (1993) Tipstreaming of droplets in simple shear flows. Chem Eng Sci 48:277–284

    Article  CAS  Google Scholar 

  • Feigl K, Megias-Alguacil D, Fischer P, Windhab EJ (2007) Simulation and experiments of droplet deformation and orientation in simple shear flow with surfactants. Chem Eng Sci 62:3242–3258

    Article  CAS  Google Scholar 

  • Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6:437–446

    Article  CAS  Google Scholar 

  • Guido S, Simeone M (1998) Binary collision of drops in simple shear flow by computer-assisted video optical microscopy. J Fluid Mech 357:1–20

    Article  CAS  Google Scholar 

  • Hu YT, Lips A (2003) Estimating surfactant surface coverage and decomposing its effect on drop deformation. Phys Rev Lett 91:044501

    Article  CAS  Google Scholar 

  • Hu YT, Pine DJ, Leal LG (2000) Drop deformation, breakup, and coalescence with compatibilizer. Phys Fluids 12:484–489

    Article  CAS  Google Scholar 

  • Janssen PJA, Anderson PD (2007) Boundary-integral method for drop deformation between parallel plates. Phys Fluids 19:043602

    Article  Google Scholar 

  • Janssen PJA, Anderson PD (2008) Surfactant-covered drops between parallel plates. Chem Eng Res Des 86:1388–1396

    Article  CAS  Google Scholar 

  • Janssen JJM, Boon A, Agterof WGM (1994) Influence of dynamic interfacial properties on droplet breakup in simple shear flow. AIChE J 40:1929–1939

    Article  CAS  Google Scholar 

  • Janssen JJM, Boon A, Agterof WGM (1997) Influence of dynamic interfacial properties on droplet breakup in plane hyperbolic flow. AIChE J 43:1436–1447

    Article  CAS  Google Scholar 

  • Jeon HK, Macosko CW (2003) Visualization of block copolymer distribution on a sheared drop. Polymer 44:5381–5386

    Article  CAS  Google Scholar 

  • Levitt L, Macosko CW (1999) Shearing of polymer drops with interface modification. Macromolecules 32:6270–6277

    Article  CAS  Google Scholar 

  • Li XF, Pozrikidis C (1997) The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow. J Fluid Mech 341:165–194

    Article  CAS  Google Scholar 

  • Maffettone PL, Minale M (1998) Equation of change for ellipsoidal drops in viscous flow. J Non-Newton Fluid Mech 78:227–241

    Article  CAS  Google Scholar 

  • Megias-Alguacil D, Fischer P, Windhab EJ (2006) Determination of the interfacial tension of low density difference liquid–liquid systems containing surfactants by droplet deformation. Chem Eng Sci 61:1386–1394

    Article  CAS  Google Scholar 

  • Migler KB (2001) String formation in sheared polymer blends: coalescence, breakup, and finite size effects. Phys Rev Lett 86:1023–1026

    Article  CAS  Google Scholar 

  • Minale M (2008) A phenomenological model for wall effects on the deformation of an ellipsoidal drop in viscous flow. Rheol Acta 47:667–675

    Article  CAS  Google Scholar 

  • Minale M, Moldenaers P, Mewis J (1997) Effect of shear history on the morphology of immiscible polymer blends. Macromolecules 30:5470–5475

    Article  CAS  Google Scholar 

  • Pathak JA, Davis MC, Hudson SD, Migler KB (2002) Layered droplet microstructures in sheared emulsions: finite-size effects. J Colloid Interface Sci 255:391–402

    Article  CAS  Google Scholar 

  • Pawar Y, Stebe KJ (1996) Marangoni effects on drop deformation in an extensional flow: the role of surfactant physical chemistry. 1. Insoluble surfactants. Phys Fluids 8:1738–1751

    Article  CAS  Google Scholar 

  • Renardy Y (2007) The effects of confinement and inertia on the production of droplets. Rheol Acta 46:521–529

    Article  CAS  Google Scholar 

  • Shapira M, Haber S (1990) Low Reynolds-number motion of a droplet in shear flow including wall effects. Int J Multiph Flow 16:305–321

    Article  CAS  Google Scholar 

  • Sibillo V, Pasquariello G, Simeone M, Cristini V, Guido S (2006) Drop deformation in microconfined shear flow. Phys Rev Lett 97:054502

    Article  Google Scholar 

  • Stone HA, Leal LG (1990) The effects of surfactants on drop deformation and breakup. J Fluid Mech 220:161–186

    Article  CAS  Google Scholar 

  • Sugiura S, Nakajima M, Iwamoto S, Seki M (2001) Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17:5562–5566

    Article  CAS  Google Scholar 

  • Tufano C, Peters GWM, Meijer HEH (2008) Confined flow of polymer blends. Langmuir 24:4494–4505

    Article  CAS  Google Scholar 

  • Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541

    Article  CAS  Google Scholar 

  • Van Puyvelde P, Velankar S, Mewis J, Moldenaers P (2002) Effect of Marangoni stresses on the deformation and coalescence in compatibilized immiscible polymer blends. Polym Eng Sci 42:1956–1964

    Article  Google Scholar 

  • Van Puyvelde P, Vananroye A, Cardinaels R, Moldenaers P (2008) Review on morphology development of immiscible blends in confined shear flow. Polymer 49:5363–5372

    Article  Google Scholar 

  • Vananroye A, Van Puyvelde P, Moldenaers P (2006a) Effect of confinement on droplet breakup in sheared emulsions. Langmuir 22:3972–3974

    Article  CAS  Google Scholar 

  • Vananroye A, Van Puyvelde P, Moldenaers P (2006b) Structure development in confined polymer blends: steady-state shear flow and relaxation. Langmuir 22:2273–2280

    Article  CAS  Google Scholar 

  • Vananroye A, Van Puyvelde P, Moldenaers P (2007) Effect of confinement on the steady-state behavior of single droplets during shear flow. J Rheol 51:139–153

    Article  CAS  Google Scholar 

  • Vananroye A, Cardinaels R, Van Puyvelde P, Moldenaers P (2008) Effect of confinement and viscosity ratio on the dynamics of single droplets during transient shear flow. J Rheol 52:1459–1475

    Article  CAS  Google Scholar 

  • Velankar S, Van Puyvelde P, Mewis J, Moldenaers P (2001) Effect of compatibilization on the breakup of polymeric drops in shear flow. J Rheol 45:1007–1019

    Article  CAS  Google Scholar 

  • Verhulst K, Moldenaers P, Minale M (2007) Drop shape dynamics of a Newtonian drop in a non-Newtonian matrix during transient and steady shear flow. J Rheol 51:261–273

    Article  CAS  Google Scholar 

  • Vlahovska PM, Blawzdziewicz J, Loewenberg M (2009) Small-deformation theory for a surfactant-covered drop in linear flows. J Fluid Mech 624:293–337

    Article  CAS  Google Scholar 

  • Yon S, Pozrikidis C (1998) A finite-volume/boundary-element method for flow past interfaces in the presence of surfactants, with application to shear flow past a viscous drop. Comput Fluids 27:879–902

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Research Foundation—Flanders (FWO Vlaanderen—post doctoral fellowship of A. Vananroye) and Onderzoeksfonds K.U.Leuven (GOA09/002) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Moldenaers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vananroye, A., Van Puyvelde, P. & Moldenaers, P. Deformation and orientation of single droplets during shear flow: combined effects of confinement and compatibilization. Rheol Acta 50, 231–242 (2011). https://doi.org/10.1007/s00397-011-0535-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-011-0535-4

Keywords

Navigation