Skip to main content
Log in

Scaling law behaviour of the retraction of a Newtonian droplet after a strain jump in a Newtonian matrix

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We performed 3D visualisation of a Newtonian droplet embedded in an immiscible Newtonian liquid after a strain jump with a home-built counter-rotating shear device. The use of different linear polyurethanes for the droplet liquid allowed us to cover almost three decades of viscosity ratios (K) and to obtain a distinct interface with PDMS matrices with the same interfacial tension for all droplet/matrix pairs. During the droplet retraction, the major axis (L) showed universal time dependence. The apparent Hencky strain of L decayed linearly at large deformations and exponentially at small deformations. After large strain steps, the droplet axis along the vorticity direction (W) deflated and then inflated and the time dependence could be well described by a log normal function. The full width at half maximum was proportional to the droplet relaxation time for all K. The amplitude and the position of the minimum of W were proportional to the affine deformation. The results revealed interesting scaling law behaviour of the droplet retraction after large strain jumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Almusallam AS, Larson RG, Solomon MJ (2000) A constitutive model for the prediction of ellipsoidal droplet shapes and stresses in immiscible blends. J Rheol 45:1055–1083

    Article  ADS  Google Scholar 

  • Assighaou S (2006) Comportement sous grandes déformations de gouttelettes de polymères dans une matrice newtonienne. Université du Maine

  • Assighaou S, Benyahia L (2008) Universal retraction process of a droplet shape after a large strain jump. Phys Rev E: Stat Phys, Plasmas, Fluids 77:036305

    CAS  ADS  Google Scholar 

  • Assighaou S, Benyahia L, Du GP-L (2007) Dispositif d’observation de gouttes sous déformation: développement et validation. Rhéologie 11:45–55

    Google Scholar 

  • Bentley BJ, Leal LG (1986) A computer-controlled four-roll mill for investigations of particle and drop dynamics in two-dimensional linear shear flows. J Fluid Mech 167:219–240

    Article  MATH  CAS  ADS  Google Scholar 

  • Chan PCH, Leal LG (1979) Motion of a deformable drop in a 2nd-order fluid. J Fluid Mech 92:131–170

    Article  MATH  ADS  Google Scholar 

  • Delaby I, Ernst B, Germain Y, Muller R (1994) Droplet deformation in polymer blends during uniaxial elongational flow: influence of viscosity ratio for large capillary numbers. J Rheol 38:1705–1720

    Article  CAS  ADS  Google Scholar 

  • Favelukis M, Lavrenteva OM, Nir A (2005) Deformation and breakup of a non-Newtonian slender drop in an extensional flow. J Non-Newton Fluid Mech 125:49–59

    Article  MATH  CAS  Google Scholar 

  • Grace HP (1982) Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem Eng Commun 14:225–227

    Article  CAS  Google Scholar 

  • Guido S, Villone M (1998) Three-dimensional shape of a drop under simple shear flow. J Rheol 42:395–415

    Article  CAS  ADS  Google Scholar 

  • Guido S, Villone M (1999) Measurement of interfacial tension by drop retraction analysis. J Colloid Interface Sci 209:247–250

    Article  CAS  PubMed  Google Scholar 

  • Hayashi R, Takahashi M, Kajihara T, Yamane H (2001a) Application of large double-step shear to analyse deformation and shape recovery of a polymer droplet in an immiscible polymer matrix. J Rheol 45:627–639

    Article  CAS  ADS  Google Scholar 

  • Hayashi R, Takahashi M, Yamane H, Jinnai H, Watanabe H (2001b) Dynamic interfacial properties of polymer blends under large step strains: shape recovery of a single droplet. Polymer 42:757–764

    Article  CAS  Google Scholar 

  • Jansseune T, Vinckier I, Moldenaers P, Mewis J (2001) Transient stresses in immiscible model polymer blends during start-up flows. J Non-Newton Fluid Mech 99:167–181

    Article  MATH  CAS  Google Scholar 

  • Leal LG (1980) Particle motions in a viscous fluid. Annu Rev Fluid Mech 12:435–476

    Article  MathSciNet  ADS  Google Scholar 

  • Lerdwijijarud W, Larson RG, Sirivat A, Solomon MJ (2003) Influence of weak elasticity of dispersed phase on droplet behavior in sheared polybutadiene/poly(dimethyl siloxane) blends. J Rheol 47:37–58

    Article  ADS  Google Scholar 

  • Luciani A, Champagne MF, Utracki LA (1997) Interfacial tension coefficient from the retraction of ellipsoidal drops. J Polym Sci, Part B: Polym Phys 35:1393–1403

    Article  CAS  ADS  Google Scholar 

  • Mighri F, Ajji A, Carreau PJ (1997) Influence of elastic properties on drop deformation in elongational flow F. J Rheol 41:1183–1201

    Article  CAS  ADS  Google Scholar 

  • Mighri F, Carreau PJ, Ajji A (1998) Influence of elastic properties on drop deformation and breakup in shear flow. J Rheol 42:1477–1490

    Article  CAS  ADS  Google Scholar 

  • Oldroyd JG (1953) The elastic and viscous properties of emulsions and suspensions. Proc R Soc Lond, Ser A 218:122–132

    Article  MATH  CAS  ADS  Google Scholar 

  • Palierne JF (1990) Linear rheology and viscoelastic emulsions with interfacial tension. Rheol Acta 29:204–214

    Article  CAS  Google Scholar 

  • Prochazka F, Nicolai T, Durand D (2000) Molar mass distribution of linear and branched polyurethane studied by size exclusion chromatography. Macromolecules 33:1703–1709

    Article  CAS  ADS  Google Scholar 

  • Rallison JM (1984) The deformation of small viscous drops and bubbles in shear flow. Annu Rev Fluid Mech 16:45–66

    Article  ADS  Google Scholar 

  • Renardy Y, Renardy M, Assighaou S, Benyahia L (2009) Numerical simulation of drop retraction after a strain jump. Phys Rev E: Stat Phys, Plasmas, Fluids 79:4

    Google Scholar 

  • Sibillo V, Simeone M, Guido S, Greco F, Maffettone PL (2006) Start-up and retraction dynamics of a Newtonian drop in a viscoelastic matrix under simple shear flow. J Non-Newton Fluid Mech 134:27–32

    Article  MATH  CAS  Google Scholar 

  • Sigillo I, Santo Ld, Guido S, Grizzuti N (1997) Comparative measurements of interfacial tension in a model polymer blend. Polym Eng Sci 37:1540–1549

    Article  CAS  Google Scholar 

  • Stone HA (1994) Dynamics of drop deformation and breakup in viscous fluids. Annu Rev Fluid Mech 26:95–102

    Article  ADS  Google Scholar 

  • Taylor GI (1932) The viscosity of a fluid containing small drops of another fluid. Proc R Soc Lond, Ser A 138:41–48

    Article  MATH  CAS  ADS  Google Scholar 

  • Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc Lond, Ser A 146:201–523

    Google Scholar 

  • Tjahjadi M, Stone HA, Ottino JM (1992) Satellite and subsatellite formation in capillary breakup. J Fluid Mech 243:297–317

    Article  CAS  ADS  Google Scholar 

  • Tjahjadi M, Ottino JM, Stone HA (1994) Estimating interfacial tension via relaxation of drop shapes and filament breakup. AlChE J 40:385

    CAS  Google Scholar 

  • Tretheway DC (2001) Deformation and relaxation of Newtonian drops in planar extensional flows of a Boger fluid. J Non-Newton Fluid Mech 99:81–108

    Article  MATH  CAS  Google Scholar 

  • Verdier C (2000) Coalescence of polymer droplets: experiments on collision. C R Acad Sci, Sér IV Phys Astrophys 1:119–126

    CAS  Google Scholar 

  • Verdier C, Brizard M (2002) Understanding droplet coalescence and its use to estimate interfacial tension. Rheol Acta 41:514–523

    Article  CAS  Google Scholar 

  • Xing P, Bousmina M, Rodrigue D, Kamal MR (2000) Critical experimental comparison between five techniques for the determination of interfacial tension in polymer blends: model system of polystyrene/polyamide-6. Macromolecules 33:8020–8034

    Article  CAS  ADS  Google Scholar 

  • Yamane H, Takahashi M, Hayashi R, Okamoto K (1998) Observation of deformation and recovery of poly(isobutylene) droplet in a poly(isobutylene)/poly(dimethyl siloxane) blend after application of step shear strain. J Rheol 42:567–580

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank T. Nicolai and J-F. Tassin for the fruitful discussions. Special acknowledgments were to Y. and M. Renardy for performing numerical simulations around this work. This research was supported by Le Conseil Régional des Pays de la Loire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lazhar Benyahia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assighaou, S., Benyahia, L. Scaling law behaviour of the retraction of a Newtonian droplet after a strain jump in a Newtonian matrix. Rheol Acta 49, 677–686 (2010). https://doi.org/10.1007/s00397-009-0429-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0429-x

Keywords

Navigation