Skip to main content
Log in

Viscoelastic flow past confined objects using a micro–macro approach

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

This paper is concerned with the numerical prediction of viscoelastic flow past a cylinder in a channel and a sphere in a cylinder using molecular-based models. The basis of the numerical method employed is a micro–macro model in which the polymer dynamics is described by the evolution of an ensemble of Brownian configuration fields. The spectral element method is used to discretize the equations in space. Comparisons are made between the macroscopic simulations based on the Oldroyd B constitutive model and microscopic simulations based on Hookean dumbbells, and excellent agreement is found. The micro–macro approach can be used to simulate models, such as the finitely extensible nonlinear elastic (FENE) dumbbell model, which do not possess a closed-form constitutive equation. Numerical simulations are performed for the FENE model. The influence of the model parameters on the flow is described and, in particular, the dependence of the drag as a function of the Weissenberg number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol. 2. Wiley, New York

    Google Scholar 

  • Carew EOA, Townsend P, Webster MF (1993) A Taylor-Petrov-Galerkin algorithm for viscoelastic flow. J Non-Newton Fluid Mech 50:253–287

    Article  MATH  CAS  Google Scholar 

  • Chauvière C, Lozinski A (2008) Simulation of dilute polymer solutions using a Fokker–Planck equation. Comput Fluids 33:687–696

    Article  Google Scholar 

  • Feigl K, Laso M, Öttinger HC (1995) CONNFFESSIT approach for solving a two-dimensional viscoelastic flow problem. Macromol 28:3261–3274

    Article  CAS  Google Scholar 

  • Gerritsma MI, Phillips TN (2000) Spectral element methods for axisymmetric stokes problems. J Comput Phys 164:81–103

    Article  MATH  ADS  CAS  MathSciNet  Google Scholar 

  • Gordon WJ, Hall CA (1973) Construction of curvilinear coordinate systems and application to mesh generation. Int J Numer Methods Fluids 7:461–477

    MATH  MathSciNet  Google Scholar 

  • Halin P, Lielens G, Keunings R, Legat V (1998) The Lagrangian particle method for macroscopic and micro–macro viscoelastic flow computations. J Non-Newton Fluid Mech 79:387–403

    Article  MATH  CAS  Google Scholar 

  • Herrchen M, Öttinger H-C (1997) A detailed comparison of various FENE dumbbell models. J Non-Newton Fluid Mech 68:17–42

    Article  CAS  Google Scholar 

  • Hu X, Ding Z, Lee LJ (2005) Simulation of 2d transient viscoelastic flow using the CONNFFESSIT approach. J Non-Newton Fluid Mech 127:107–122

    Article  CAS  Google Scholar 

  • Hua CC, Schieber JD (1998) Viscoelastic flow through fibrous media using the CONNFFESSIT approach. J Rheol 42:477–491

    Article  ADS  CAS  Google Scholar 

  • Hulsen MA, van Heel APG, van den Brule BHAA (1997) Simulation of viscoelastic flows using Brownian configuration fields. J Non-Newton Fluid Mech 70:79–101

    Article  CAS  Google Scholar 

  • Inkson NJ, Phillips TN, van Os RGM (2008) Numerical simulation of flow past a cylinder using models of XPP type. J Non-Newton Fluid Mech xx:xx

  • James DF, Acosta AJ (1970) On the slow flow of viscoelastic liquids past a circular cylinder. J Non-Newton Fluid Mech 42:269–288

    ADS  Google Scholar 

  • Karniadakis GEM, Sherwin SJ (1999) Spectral/hp element methods for CFD. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Keunings R (1997) On the Peterlin approximation for finitely extensible dumbbells. J Non-Newton Fluid Mech 68:85–100

    Article  CAS  Google Scholar 

  • Kröger M, Ammar A, Chinesta F (2008) Consistent closure schemes for statistical models of anisotropic fluids. J Non-Newton Fluid Mech 149:40–55

    Article  MATH  Google Scholar 

  • Laso M, Öttinger HC (1993) Calculation of viscoelastic flow using molecular models: the CONNFFESSIT approch. J Non-Newton Fluid Mech 47:1–20

    Article  MATH  CAS  Google Scholar 

  • Lielens G, Keunings R, Legat V (1999) The FENE-L and FENE-LS closure approximations to the kinetic theory of finitely extensible dumbbells. J Non-Newton Fluid Mech 87:179–196

    Article  MATH  CAS  Google Scholar 

  • Lozinski A, Chauvière C, Fang J, Owens RG (2003) A Fokker-Planck simulation of fast flows of concentrated polymer solutions in complex geometries. J Rheol 47:535–561

    Article  ADS  CAS  Google Scholar 

  • Lunsmann WJ, Genieser L, Armstrong RC, Brown RA (1993) Finite element analysis of steady viscoelastic flow around a sphere in a tube: calculations with constant viscosity models. J Non-Newton Fluid Mech 48:63–99

    Article  MATH  CAS  Google Scholar 

  • Maday Y, Patera AT (1989) Spectral element methods for the incompressible Navier–Stokes equations. In: Noor AK, Oden JT (eds) State of the art surveys in computational mechanics. ASME, New York, pp 71–143

    Google Scholar 

  • Manero O, Mena B (1981) On the slow flow of viscoelastic liquids past a circular cylinder. J Non-Newton Fluid Mech 9:379–387

    Article  CAS  Google Scholar 

  • Matallah H, Townsend P, Webster MF (1998) Recovery and stress splitting schemes for viscoelastic flows. J Non-Newton Fluid Mech 75:139–166

    Article  MATH  CAS  Google Scholar 

  • McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J Rheol 42:81–110

    Article  ADS  CAS  Google Scholar 

  • Melchior M, Öttinger H-C (1995) Variance reduced simulations of stochastic differential equations. J Chem Phys 103:9506–9509

    Article  ADS  CAS  Google Scholar 

  • Melchior M, Öttinger H-C (1996) Variance reduced simulations of polymer dynamics. J Chem Phys 105:3316–3331

    Article  ADS  CAS  Google Scholar 

  • Mena B, Caswell B (1974) Slow flow of an elastic-viscous fluid past an immersed body. Chem Eng J 8:125–134

    Article  Google Scholar 

  • Orszag SA (1980) Spectral methods for problems in complex geometries. J Comput Phys 37:70–92

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Öttinger H-C (1996) Stochastic processes in polymeric fluids: tools and examples for developing simulation algorithms. Springer, Berlin

    MATH  Google Scholar 

  • Öttinger H-C, van den Brule BHAA, Hulsen MA (1997) Brownian configuration fields and variance reduced CONNFFESSIT. J Non-Newton Fluid Mech 70:255–261

    Article  Google Scholar 

  • Owens RG, Phillips TN (1996) Steady viscoelastic flow past a sphere using spectral elements. Int J Numer Methods Eng 39:1517–1534

    Article  MATH  MathSciNet  Google Scholar 

  • Owens RG, Phillips TN (2002) Computational rheology. Imperial College Press, London

    MATH  Google Scholar 

  • Patera AT (1984) A spectral element method for fluid dynamics: laminar flow in a channel expansion. J Comput Phys 54:468–488

    Article  MATH  ADS  Google Scholar 

  • Peterlin A (1966) Hydrodynamics of macromolecules in a velocity field with longitudinal gradient. J Polym Sci B 4:287–291

    Article  CAS  Google Scholar 

  • Phillips TN, Smith KD (2006) A spectral element approach to the simulation of viscoelastic flows using Brownian configuration fields. J Non-Newton Fluid Mech 138:98–110

    Article  CAS  Google Scholar 

  • Pilate G, Crochet MJ (1977) On the slow flow of viscoelastic liquids past a circular cylinder. J Non-Newton Fluid Mech 2:323–341

    Article  MATH  Google Scholar 

  • Sizaire R, Lielens G, Jaumain I, Keunings R, Legat V (1999) On the hysteretic behaviour of dilute polymer solutions in relaxation following extensional flow. J Non-Newton Fluid Mech 82:233–253

    Article  MATH  CAS  Google Scholar 

  • Townsend P (1980) A numerical simulation of Newtonian and visco-elastic flow past stationary and rotating cylinders. J Non-Newton Fluid Mech 6:219–243

    Article  MATH  Google Scholar 

  • Verbeeten WMH, Peters GWM, Baaijens FTP (2001) Differential constitutive equations for polymer melts: the extended pom-pom model. J Rheol 45(4):823–843

    Article  ADS  CAS  Google Scholar 

  • Verbeeten WMH, Peters GWM, Baaijens FTP (2002) Viscoelastic analysis of complex melt flows using the extended pom-pom model. J Non-Newton Fluid Mech 108:301–326

    Article  MATH  CAS  Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge the financial support from the National Council for Science and Technology (CONACYT) of Mexico and also to Project 47192 for funding his doctoral studies at UNAM. Part of this work was performed while the first author was a visiting postgraduate researcher at Cardiff University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vargas, R.O., Manero, O. & Phillips, T.N. Viscoelastic flow past confined objects using a micro–macro approach. Rheol Acta 48, 373–395 (2009). https://doi.org/10.1007/s00397-008-0323-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-008-0323-y

Keywords

Navigation