Skip to main content

Advertisement

Log in

Holographic microrheology of polysaccharides from Streptococcus mutans biofilms

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We use three-dimensional holographic particle tracking to perform microrheological measurements of model gelled media, including the polysaccharide pellicle of dental biofilms created by the common cariogenic oral pathogen Streptococcus mutans. Nanometer-resolution video-rate holographic tracking of embedded colloidal spheres provides accurate measurements of the gels’ complex viscoelastic moduli, including insights into these properties’ heterogeneity. When applied to polysaccharides of S. mutans biofilms, these techniques promise quantitative microscopic assays for candidate therapeutic agents against cariogenic dental biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  • Cense AW, Peeters EAG, Gottenbos B, Baaijens FPT, Nuijs AM, van Dongen MEH (2006) Mechanical properties and failure of Streptococcus mutans biofilms, studied using a microindentation device. J Microbiol Methods 67:463–472

    Article  CAS  Google Scholar 

  • Chen DT, Weeks ER, Crocker JC, Islam MF, Verma R, Gruber J, Levine AJ, Lubensky TC, Yodh AG (2003) Rheological microscopy: local mechanical properties from microrheology. Phys Rev Lett 90:108301

    Article  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  Google Scholar 

  • Crocker JC, Grier DG (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179:298–310

    Article  CAS  Google Scholar 

  • Crocker JC, Valentine MT, Weeks ER, Gisler T, Kaplan PD, Yodh AG, Weitz DA (2000) Two-point microrheology of inhomogeneous soft materials. Phys Rev Lett 85:888–891

    Article  CAS  Google Scholar 

  • Cury JA, Rebelo MA, Del Bel Cury AA, Derbyshire MT, Tabchoury CP (2000) Biochemical composition and cariogenicity of dental plaque formed in the presence of sucrose or glucose and fructose. Caries Res 34:491–497

    Article  CAS  Google Scholar 

  • Dasgupta BR, Tee SY, Crocker JC, Frisken BJ, Weitz DA (2002) Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering. Phys Rev E 65:051505

    Article  Google Scholar 

  • Desprat N, Guiroy A, Asnacios A (2006) Microplates-based rheometer for a single living cell. Rev Sci Instrum 77:055111

    Article  Google Scholar 

  • Duarte S, Gregoire S, Singh AP, Vorsa N, Schaich K, Bowen WH, Koo H (2006) Inhibitory effects of cranberry polyphenols on formation and acidogenicity of Streptococcus mutans biofilms. FEMS Microbiol Lett 257:50–56

    Article  CAS  Google Scholar 

  • Duarte S, Koo H, Bowen WH, Hayacibara MF, Cury JA, Ikegaki M, Rosalen PL (2003) Effect of a novel type of propolis and its chemical fractions on glucsyltransferases and on growth and adherence of mutans streptococci. Biol Pharm Bull 26:527–531

    Article  CAS  Google Scholar 

  • Dufresne ER, Altman D, Grier DG (2001) Brownian dynamics of a sphere in a slit pore. Europhys Lett 53:264–270

    Article  CAS  Google Scholar 

  • Gittes F, Schnurr B, Olmsted PD, MacKintosh FC, Schmidt CF (1997) Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys Rev Lett 79:3286–3289

    Article  CAS  Google Scholar 

  • Klapper I, Rupp CJ, Cargo R, Purvedorj B, Stoodley P (2002) Viscoelastic fluid description of bacterial biofilm material properties. Biotech Bioeng 80:289–296

    Article  CAS  Google Scholar 

  • Koo H, Hayacibara MF, Cury BD, Rosalen PL, Park YK, Vacca-Smith AM, Bowen WH (2003) Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother 52:782–789

    Article  CAS  Google Scholar 

  • Korstgens V, Flemming HC, Wingender J, Borchard W (2001) Uniaxial compression measurement device for investigation of the mechanical stability of biofilms. J Microbiol Methods 46:9–17

    Article  CAS  Google Scholar 

  • Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567

    CAS  Google Scholar 

  • Lee SH, Grier DG (2007) Holographic microscopy of holographically trapped three-dimensional structures. Opt Express 15:1505–1512

    Article  Google Scholar 

  • Lee SH, Roichman Y, Yi GR, Kim SH, Yang SM, van Blaaderen A, van Oostrum P, Grier DG (2007) Characterizing and tracking single colloidal particles with video holographic microscopy. Opt Express 15:18275–18282

    Article  Google Scholar 

  • Mason TG (2000) Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. Rheol Acta 39:371–378

    Article  CAS  Google Scholar 

  • Mason TG, Dhople A, Wirtz D (1997) Concentrated DNA rheology and microrheology. In: MRS proceedings on statistical mechanics in physics and biology, vol 463. Materials Research Society, Pittsburgh, pp 153–158

    Google Scholar 

  • Mason TG, Ganesan K, van Zanten JH, Wirtz D, Kuo SC (1997) Particle tracking microrheology of complex fluids. Phys Rev Lett 79:3282–3285

    Article  CAS  Google Scholar 

  • Mason TG, Weitz DA (1995) Optical measurements of frequency-dependent viscoelastic moduli of complex fluids. Phys Rev Lett 74:1250–1253

    Article  CAS  Google Scholar 

  • Meiners JC, Quake SR (1999) Direct measurement of hydrodynamic cross correlations between two particles in an external potential. Phys Rev Lett 82:2211–2214

    Article  CAS  Google Scholar 

  • Pine DJ, Weitz DA, Chaikin PM, Herbolzheimer E (1988) Diffusing wave spectroscopy. Phys Rev Lett 60:1134–1137

    Article  CAS  Google Scholar 

  • Savin T, Doyle PS (2005) Static and dynamic errors in particle tracking microrheology. Biophys J 88:623–638

    Article  CAS  Google Scholar 

  • Shaw T, Winston M, Rupp CJ, Klapper I, Stoodley P (2004) Commonality of elastic relaxation times in biofilms. Phys Rev Lett 93:098102

    Article  CAS  Google Scholar 

  • Sheng J, Malkiel E, Katz J (2006) Digital holographic microscope for measuring three-dimensional particle distributions and motions. Appl Opt 45:3893–3901

    Article  Google Scholar 

  • Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM (1999) Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. Biotech Bioeng 65:83–92

    Article  CAS  Google Scholar 

  • Towler BW, Rupp CJ, Cunningham AB, Stoodley P (2003) Viscoelastic properties of a mixed culture biofilm from rheometer creep analysis. Biofouling 19:279–285

    Article  Google Scholar 

  • Vinogradov AM, Winston M, Rupp CJ, Stoodley P (2004) Rheology of biofilms formed from the dental plaque pathogen Streptococcus mutans. Biofilms 1:49–56

    Article  Google Scholar 

  • Wloka M, Rehage H, Flemming HC, Wingender J (2006) Structure and rheological behavior of the extracellular polymeric substance network of mucoid Pseudomonas aeruginosa biofilms. Biofilms 2:275–283

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Science Foundation under Grant Number DMR-0606415.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Grier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheong, F.C., Duarte, S., Lee, SH. et al. Holographic microrheology of polysaccharides from Streptococcus mutans biofilms. Rheol Acta 48, 109–115 (2009). https://doi.org/10.1007/s00397-008-0320-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-008-0320-1

Keywords

Navigation