Skip to main content
Log in

Preparation of well-dispersed magnetorheological fluids and effect of dispersion on their magnetorheological properties

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this work, we describe methods for the preparation of suspensions of micron-sized iron particles grafted with different surfactants. The aim is to obtain well-dispersed magnetorheological (MR) fluids. The effectiveness of the surfactants as dispersants was analyzed quantitatively by means of rheological measurements. With this objective, the viscosity of the suspensions was measured, and the results were compared with the prediction of the Batchelor’s formula (Batchelor, J Fluid Mech 83:97–117, 1977). The effect of dispersion on the MR properties of the suspensions was also studied. It was found that the quality of the dispersion of a suspension does not have an important effect on the magnitude of the field-induced yield stress but does on the change of viscosity induced by the field. It was also found that the transition from the solid-like state to the liquid-like one happens very smoothly for well-dispersed suspensions, contrarily to the abrupt transition for poorly dispersed suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barnes HA, Hutton JR, Walters K (1998) An introduction to rheology. Elsevier, Amsterdam

    Google Scholar 

  • Batchelor GK (1977) Effect of Brownian-motion on bulk stress in a suspension of spherical-particles. J Fluid Mech 83:97–117

    Article  Google Scholar 

  • Bossis G, Volkova O, Lacis S, Meunier A (2002) Magnetorheology: fluids, structures and rheology. In: Odenbach S (ed) Ferrofluids. Springer, Berlin, pp 202–230

    Google Scholar 

  • Charles SW (2002) The preparation of magnetic fluids. In: Odenbach S (ed) Ferrofluids. Springer, Berlin, pp 3–19

    Google Scholar 

  • Delgado AV, Arroyo FJ (2002) Electrokinetic phenomena and their experimental determination. In: Delgado AV (ed) Interfacial electrokinetics and electrophoresis, Surfactant Science Series. vol. 106. Dekker, New York, pp 1–54

    Google Scholar 

  • De Vicente J, Delgado AV, Plaza RC, Durán JDG, González-Caballero F (2000) Stability of cobalt ferrite colloidal particles. Effect of pH and applied magnetic fields. Langmuir 16:7954–7961

    Article  Google Scholar 

  • De Vicente J, López-López MT, González-Caballero F, Durán JDG (2003) Rheological study of the stabilization of magnetizable colloidal suspensions by addition of silica nanoparticles. J Rheol 47:1093–1109, DOI 10.1122/1.1595094

    Article  Google Scholar 

  • Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen. Ann Phys 324:289–306, DOI 10.1002/andp.19063240205

    Article  Google Scholar 

  • Einstein A (1911) Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Moleküldimensionen. Ann Phys 339:591–592, DOI 10.1002/andp.19113390313

    Article  Google Scholar 

  • Ginder JM (1998) Behavior of magnetorheological fluids. MRS Bull 23:26–29

    CAS  Google Scholar 

  • Ginder JM, Elie LD, Davis LC (1996) Magnetic fluid-based magnetorheological fluids. US Patent 5.549.837

  • Hunter RJ (1987) Foundations of colloid science, vol I. Oxford University Press, Oxford

    Google Scholar 

  • Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3:137–152

    Article  CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • López-López MT, de Vicente J, González-Caballero F, Durán JDG (2005a) Stability of magnetizable colloidal suspensions by addition of oleic acid and silica nanoparticles. Colloids Surf A 264:75–81, DOI 10.1016/j.colsurfa.2005.05.026

    Article  Google Scholar 

  • López-López MT, de Vicente J, Bossis G, González-Caballero F, Durán JDG (2005b) Preparation of stable magnetorheological fluids based on extremely bimodal iron-magnetite suspensions. J Mater Res 20:874–881, DOI 10.1557/JMR.2005.0108

    Article  Google Scholar 

  • López-López MT, Zugaldía A, González-Caballero F, Durán JDG (2006a) Sedimentation and redispersion phenomena in iron-based magnetorheological fluids. J Rheol 50:543–560, DOI 10.1122/1.2206716

    Article  Google Scholar 

  • López-López MT, Kuzhir P, Lacis S, Bossis G, González-Caballero F, Durán JDG (2006b) Magnetorheology for suspensions of solid particles dispersed in ferrofluids. J Phys Condens Mat 18:S2803–S2813

    Article  Google Scholar 

  • Macosko CW (1994) Rheology: principles, measurements, and applications. Wiley, New York

    Google Scholar 

  • Ochonski W (2005) The attraction of ferrofluid bearings. Mach Des 3:96–102

    Google Scholar 

  • Park JH, Chin BD, Park OK (2001) Rheological properties and stabilization of magnetorheological fluids in a water-in-oil emulsion. J Colloid Interf Sci 240:349–354, DOI 10.1006/jcis.2001.7622

    Article  CAS  Google Scholar 

  • Phulé PP, Ginder JM (1998) The materials science of field-responsive fluids. MRS Bull 23:19–21

    Google Scholar 

  • Phulé PP, Mihalcin MP, Genc S (1999) The role of the dispersed-phase remnant magnetization on the redispersibility of magnetorheological fluids. J Mater Res 14:3037–3041

    Article  Google Scholar 

  • Rankin PJ, Horvath AT, Klingenberg DJ (1999) Magnetorheology in viscoplastic media. Rheol Acta 38:471–477

    Article  CAS  Google Scholar 

  • Rosensweig RE (1985) Ferrohydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Russel WB, Saville DA, Schowalter WR (1989) Colloidal dispersion. Cambridge University Press, Cambridge

    Google Scholar 

  • Van Ewijk GA, Vroege GJ, Philipse AP (1999) Convenient preparation methods for magnetic colloids. J Magn Magn Mater 201:31–33

    Article  Google Scholar 

  • Van Oss CJ, Chaudhury MK, Good RJ (1998) Interfacial Lifshitz–van der Waals and polar interactions in macroscopic systems. Chem Rev 88:927–941, DOI 10.1021/cr00088a006

    Google Scholar 

  • Viota JL, de Vicente J, Durán JDG, Delgado AV (2005) Stabilization of magnetorheological suspensions by polyacrylic acid polymers. J Colloid Interf Sci 284:527–541, DOI 10.1016/j.jcis.2004.10.024

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Eureka E!3733 Hydrosmart project is acknowledged for the financial support. One of the authors (M.T.L.-L.) also acknowledges financial support by Secretaría de Estado de Universidades e Investigación (MEC, Spain) through its Postdoctoral Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Modesto T. López-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-López, M.T., Kuzhir, P., Bossis, G. et al. Preparation of well-dispersed magnetorheological fluids and effect of dispersion on their magnetorheological properties. Rheol Acta 47, 787–796 (2008). https://doi.org/10.1007/s00397-008-0271-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-008-0271-6

Keywords

Navigation