Skip to main content
Log in

The effect of viscoelasticity on stress fields within polyethylene melt flow for a cross-slot and contraction–expansion slit geometry

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The sensitivity of the principal stress difference (PSD) profiles to material viscoelasticity is demonstrated for two flow geometries using three different polyethylenes. Studies were performed using both experimental optical techniques and computational simulations, in the latter case to evaluate the ability to model these complex flows. The materials were characterised using linear and extensional rheology which was fitted to a multimode POM-POM model implemented in the Lagrangian–Eulerian code flowSolve. A contraction–expansion (CE) slit geometry was used to create a mixed, but primarily simple shear flow, whilst a cross-slot geometry provided a region of high extensional shear and high strain. In both flows, the PSD developed from an initial Newtonian profile to increasing levels of asymmetry between the inlet and the outlet flow. More specific phenomena, such as downstream stress fangs in the CE slit and the formation of centreline cusps and “W”-shaped cusps in the cross-slot, were also observed. The simulations of PSD development within the CE slit geometry quantitatively captured the experimental results. In the case of the cross-slot geometry, the qualitative features of the PSD development were well captured, although the results were quantitatively less accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agassant JF, Baaijens F, Bastian H, Bernnat A, Bogaerds ACB, Coupez T, Debbaut B, Gavrus AL, Goublomme A, van Gurp M, Koopmans RJ, Laun HM, Lee K, Nouatin OH, Makley MR, Peters GWM, Rekers G, Verbeeten WHM, Vergnes B, Wagmer MH, Wassner E, Zoetelief WF (2002) The matching of experimental polymer processing flows to viscoelastic numerical simulation. International Polymer Processing XVII 1:3–10

    Google Scholar 

  • Barakos G, Mitsoulis E (1995) Numerical simulation of extrusion through orifice dies and prediction of Bagley correction for an IUPAC-LDPE melt. J Rheol 39(1):193–209

    Article  CAS  Google Scholar 

  • Bent J, Hutchings LR, Richards RW, Gough T, Spares R, Coates PD, Grillo I, Harlen OG, Read DJ, Graham RS, Likhtman AE, Groves DJ, Nicholson TM, McLeish TCB (2003) Neutron-mapping polymer flow: scattering, flow visualisation and molecular theory. Science 301:1691–1695

    Article  CAS  Google Scholar 

  • Beraudo C, Fortin A, Coupez T, Demay Y, Vergnes B, Agassant JF (1998) A finite element method for computing the flow of multi-mode viscoelastic fluids: comparison with experiments. J Non-Newtonian Fluid Mech 75(1):1–23

    Article  CAS  Google Scholar 

  • Blackwell RJ, Harlen OG, McLeish TCB (2000) Molecular drag-strain coupling in branched polymer melts. J Rheol 44:121–136

    Article  CAS  Google Scholar 

  • Checker N, Mackley MR, Mead DW (1983) On the flow of molten polymer into, within and out of ducts. Philos Trans R Soc Lond A 1504(308):451–477

    Article  Google Scholar 

  • Clemeur N, Rutgers RPG, Debbaut B (2004a) Numerical simulation of abrupt contraction flows using the double convected pom-pom model. J Non-Newtonian Fluid Mech 117:193–209

    Article  CAS  Google Scholar 

  • Clemeur N, Rutgers RPG, Debbaut B (2004b) Numerical evaluation of three dimensional effects in planar flow birefringence. J Non-Newtonian Fluid Mech 123:105–120

    Article  CAS  Google Scholar 

  • Collis MW, Mackley MR (2005) The melt processing of monodisperse and polydisperse polystyrene melts within a slit entry and exit flow. J Non-Newtonian Fluid Mech 128(1):29–41

    Article  CAS  Google Scholar 

  • Coventry KD (2006) Cross-slot rheology of polymers. PhD Thesis, Department of Chemical Engineering, University of Cambridge

  • Coventry KD, Mackley MR (2008) Cross-slot extensional flow of polymer melts using a multi-pass rheometer. J Rheol (in press)

  • Crowley DG, Frank FC, Mackley MR, Stephenson RG (1976) Localised flow birefringence of polyethylene oxide solutions in a four roll mill. J Polym Sci 14:1111–1119

    CAS  Google Scholar 

  • Das C, Inkson NJ, Read DJ, Kelmanson K (2006) Computational linear rheology of general branch-on-branch polymers. J Rheol 50(2):207–234

    Article  CAS  Google Scholar 

  • den Doelder CF, Koopmans R, Dees M, Mangnus M (2005) Pressure oscillations and periodic extrudate distortions of long-chain branched polyolefins. J Rheol 49(1):113–126

    Article  CAS  Google Scholar 

  • Frank FC, Mackley MR (1976) Localized flow birefringence of polyethylene oxide solutions in a two roll mill. J Polym Sci A2(14):1121–1131

    Google Scholar 

  • Han CD (1976) Rheology in polymer processing. Academic, New York

    Google Scholar 

  • Han CD, Drexler LH (1973) Studies of converging flows of viscoelastic polymeric melts. I. Stress–birefringent measurements in the entrance region of a sharp-edged slit die. J Appl Polymer Sci 17:2329–2354

    Article  CAS  Google Scholar 

  • Harlen OG, Rallison JM, Chilcott MD (1990) High-Deborah-number flows of dilute polymer solutions. J Non-Newtonian Fluid Mech 34:319–349

    Article  CAS  Google Scholar 

  • Harlen OG, Hinch EJ, Rallison JM (1992) Birefringent pipes: the steady flow of a dilute polymer solution near a stagnation point. J Non-Newtonian Fluid Mech 44:229–265

    Article  CAS  Google Scholar 

  • Harlen OG, Rallison JM, Szabo P (1995) A split Lagrangian–Eulerian method for simulating transient viscoelastic flows. J Non-Newtonian Fluid Mech 60:81

    Article  CAS  Google Scholar 

  • Hassell DG, Mackley MR (2008) Localised flow induced crystallisation of a polyethylene melt. Rheol Acta. DOI 10.1007/s00397-008-0263-6

  • Hertel D, von Leon L, Münstedt H (2007) Flow of polyethylene melts into a slit die investigated by laser-Doppler velocimetry. Presentation AERC Naples

  • Inkson NJ, McLeish TCB, Harlen OG, Groves DG (1999) Predicting low density polyethylene melt rheology in elongational and shear flows with “pom-pom” constitutive equations. J Rheol 43:873–896

    Article  CAS  Google Scholar 

  • Kiriakidis DG, Park HJ, Mitsoulis E, Vergnes B, Agassant J-F (1993) A study of stress distribution in contraction flows of an LLDPE melt. J Non-Newtonian Fluid Mech 47:339–356

    Article  CAS  Google Scholar 

  • Lee K, Mackley MR, Mcleish TCB, Nicholson TM, Harlen O (2001) Experimental observation and numerical simulation of transient stress fangs within flowing molten polyethylene. J Rheol 45(6):1261–1277

    Article  CAS  Google Scholar 

  • Lodge AS (1955) Variation of flow birefringence with stress. Nature 176:838

    Article  CAS  Google Scholar 

  • Luap C, Karlina M, Schweizer T, Venerus DC (2006) Limit of validity of the stress-optical rule from polystyrene melts: influence of polydispersity. J Non-Newtonian Fluid Mech 138(2-3):197–203

    Article  CAS  Google Scholar 

  • Mackley MR, Marshall RTJ, Smeulders JBAF (1995) The multipass rheometer. J Rheol 39(6):1293–1309

    Article  CAS  Google Scholar 

  • Macosko CW (1994) Rheology, principles, measurements and applications. Wiley-VCH, New York

    Google Scholar 

  • Martyn MT, Groves DJ, Coates PD (2000) In process measurement of apparent extensional viscosity of low density polyethylene melts using flow visualization. Plast Rubber Compos 29:14–22

    CAS  Google Scholar 

  • McLeish TCB, Larson RC (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J Rheol 42(1):81–110

    Article  CAS  Google Scholar 

  • Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33(1):1–21

    Article  CAS  Google Scholar 

  • Mitsoulis E, Schwetz M, Münstedt H (2003) Entry flow of LDPE melts in a planar contraction. J Non-Newtonian Fluid Mech 111(1):41–61

    Article  CAS  Google Scholar 

  • Park HJ, Kiriakidis DG, Mitsoulis E, Lee K-J (1992) Birefringence studies in die flows of an HDPE melt. J Rheol 36:1563–1583

    Article  CAS  Google Scholar 

  • Peters GWM, Schoonen JFM, Baaijens FPT, Meijer HEH (1999) On the performance of enhanced constitutive models for polymer melts in a cross-slot flow. J Non-Newtonian Fluid Mech 82:387–427

    Article  CAS  Google Scholar 

  • Schoonen J (1998) Determination of rheological constitutive equations using complex flows. Ph.D. Thesis, Eindhoven Univeristy of Technology, downloadable from http://www.mate.tue.nl

  • Schoonen JFM, Swartjes FHM, Peters GWM, Bjens FPT, Meijer GWM (1998) A 3D numerical/experimental study on a stagnation flow of a polyisobutylene solution. J Non-Newtonian Fluid Mech 79(2–3):529–561

    Article  CAS  Google Scholar 

  • Scrivener O, Berner C, Cressely R, Hocquart R, Sellin R, Vlaches NS (1979) Dynamical behaviour of drag-reducing polymer solutions. J Non-Newtonian Fluid Mech 5:475–495

    Article  CAS  Google Scholar 

  • Sirakov I, Ainser A, Haouche M, Guillet J (2005) Three-dimensional numerical simulation of viscoelastic contraction flows using the Pom-Pom differential constitutive model. J Non-Newtonian Fluid Mech 126(2):163–173

    Article  CAS  Google Scholar 

  • Soulages J (2007) Flow birefringence and velocity measurements for polymer melts in a cross-slot flow channel. Ph.D. Thesis no. 17180. ETH Zürich

  • Soulages J, Schweizer T, Venerus DC, Hostettler J, Mettler F, Kroger M, Ottinger HC (2007) Lubricated optical rheometer for the study of two-dimensional complex flows of polymer melts. J Non-Newtonian Fluid Mech 150:43–55

    Article  CAS  Google Scholar 

  • Sridhar T, Tirtaatmadja V, Nguyan DA, Gupta RK (1991) Measurement of extensional viscosity of polymer solutions. J Non-Newtonian Fluid Mech 40(3):271–280

    Article  CAS  Google Scholar 

  • Taylor GI (1934) The formation of emulsions in definable fields of flow. Proc R Soc Lond A146:501–523

    Google Scholar 

  • Valette R, Mackley MR, Hernandez Fernandez del Castillo G (2006) Matching time dependent pressure driven flows with a Rolie Poly numerical simulation. J Non-Newtonian Fluid Mech 136(2–3):118–125

    Article  CAS  Google Scholar 

  • Venerus DC, Zhu SH, Öttinger HC (1999) Stress and birefringence measurements during the uniaxial elongation of polystyrene melts. J Rheol 43(3):795–813

    Article  CAS  Google Scholar 

  • Verbeeten WMH (2001) Computational polymer melt rheology. PhD Thesis, Technische Universiteit Eindhoven

  • Wagner MH, Rolon-Garrido VH, Chai CK (2005) Exponential shear flow of branched polyethylenes in rotational parallel-plate geometry. Rheol Acta 45:164–173

    Article  CAS  Google Scholar 

  • Wales JLS (1976) The application of flow birefringence to rheological studies of polymer melts. PhD Thesis, Delft University of Technology, Delft

  • Wood-Adams P, Costeux S (2001) Thermorheological behaviour of polyethylene: effects of microstructure and long chain branching. Macromolecules 34:6281–6290

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank N. Inkson, K. Coventry, S. Butler, O. Harlen, H. Klein and J. Embery for useful input and discussions and Dow for materials. All authors would like to acknowledge funding under the EPSRC MUPP2 research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm R. Mackley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassell, D.G., Auhl, D., McLeish, T.C.B. et al. The effect of viscoelasticity on stress fields within polyethylene melt flow for a cross-slot and contraction–expansion slit geometry. Rheol Acta 47, 821–834 (2008). https://doi.org/10.1007/s00397-008-0261-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-008-0261-8

Keywords

Navigation