Skip to main content
Log in

A tool for rapid quenching of elongated polymer melts

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this article, we present a device for rapid quenching of elongated polymer melts. The tool is an accessory to the uniaxial elongational rheometer RME of Meissner and Hostettler. It is intended to be used for microscopic and other investigations of stretched polymers. The device allows us to solidify a polymer melt by pouring liquid nitrogen on it and to cut it at the nearly same instant of time. Then the sample can be easily removed from the stretching apparatus. Solving the heat diffusion equation for a polymer melt, which is cooled by liquid nitrogen, we theoretically estimate the quenching time of this method. To demonstrate that this quenching procedure indeed rapidly cools a polymer melt, the stress birefringence of elongated and subsequently quenched polystyrene melts is measured and the stress-optical coefficient C is determined. The experimental value of the stress-optical coefficient is |C|= 4.65×10−9 Pa−1, which agrees well with the data in literature. Using this tool for elongation experiments with the RME, polymer melts can be solidified in between approximately 0.2 and 2.0 s, depending on the thickness of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bach A, Rasmussen HK, Hassager O (2003) Extensional viscosity for polymer melts measured in the filament stretching rheometer. J Rheol 47(2):429–441

    Article  CAS  Google Scholar 

  • Delaby I, Ernst B, Germain Y, Muller R (1994) Droplet deformation in polymer blends during uniaxial elongational flow: influence of viscosity ratio for large capillary numbers. J Rheol 38(6):1705–1720

    Article  CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  • Fornes TD, Baur JW, Sabba Y, Thomas EL (2006) Morphology and properties of melt-spun polycarbonate fibers containing single- and multi-wall carbon nanotubes. Polymer 47: 1704–1714

    Article  CAS  Google Scholar 

  • Freiburg Materials Research Center (2001) Service group scientific data processing, NLREG (non-linear-regularization). Software version Rheology 2.2, August 2001

  • Gramespacher H, Meissner J (1997) Melt elongation and recovery of polymer blends, morphology, and influence of interfacial tension. J Rheol 41(1):27–44

    Article  CAS  Google Scholar 

  • Hachmann P, Meissner J (2003) Rheometer for equibiaxial and planar elongations of polymer melts. J Rheol 47(4): 989–1010

    Article  CAS  Google Scholar 

  • Handge UA (2005) Experimental investigation of equibiaxial extension and breakup of drops in a molten two phase polymer blend. Phys Rev E 72:011801

    Article  CAS  Google Scholar 

  • Handge UA, Pötschke P (2004,2005) Interplay of rheology and morphology in melt elongation and subsequent recovery of polystyrene/poly(methyl methacrylate) blends J Rheol 48:1103–1122; Erratum 49:1553

    Article  CAS  Google Scholar 

  • Handge UA, Pötschke P (2006) Deformation and orientation during shear and elongation of a molten polycar-bonate/carbon nanotubes composite. Rheol Acta (accepted)

  • Heindl M, Sommer MK, Münstedt H (2004) Morphology development in polystyrene/polyethylene blends during uniaxial elongational flow. Rheol Acta 44:55–70

    Article  CAS  Google Scholar 

  • Kröger M (2004) Simple models for complex nonequilibrium fluids. Phys Rep 390(6):453–551

    Article  Google Scholar 

  • Lee WK, Kim HD, Kim EY (2006) Morphological reorientation by extensional flow deformation of a triblock copolymer styrene–isoprene–styrene. Current Applied Physics 6(4):718–722

    Article  Google Scholar 

  • Luap C, Müller C, Schweizer T, Venerus DC (2005) Simultaneous stress and birefringence measurements during uniaxial elongation of polystyrene melts with narrow molecular weight distribution. Rheol Acta 45:83–91

    Article  CAS  Google Scholar 

  • Maia JM, Covas JA, Nóbrega JM, Dias TF, Alves FE (1999) Measuring uniaxial extensional viscosity using a modified rotational rheometer. J Non-Newton Fluid Mech 80:183–197

    Article  CAS  Google Scholar 

  • Matsumoto T, Bogue DC (1977) Stress birefringence in amorphous polymers under nonisothermal conditions. J Polym Sci Polym Phys 15:1663–1674

    Article  CAS  Google Scholar 

  • McKinley GH, Sridhar T (2002) Filament-stretching rheometry of complex fluids. Annu Rev Fluid Mech 34:375–415

    Article  Google Scholar 

  • Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21

    Article  CAS  Google Scholar 

  • Muller R, Froelich D (1985) New extensional rheometer for elongational viscosity and flow birefringence measurements: some results on polystyrene melts. Polymer 26:1477–1482

    Article  CAS  Google Scholar 

  • Münstedt H (1979) New universal extensional rheometer for polymer melts. Measurements on a polystyrene sample. J Rheol 23(4):421–436

    Article  Google Scholar 

  • Oosterlink F, Mours M, Laun HM, Moldenaers P (2005) Morphology development of a polystyrene/polymethylmethacrylate blend during start-up of uniaxial elongational flow. J Rheol 49(4):897–918

    Article  Google Scholar 

  • Schrader D (1999) Physical constants of poly(styrene). In: Brandrup J, Immergut EH, Grulke EA (eds) Polymer handbook, 4th edn. Wiley, New York, pp. V, 91

    Google Scholar 

  • Schweizer T (2000) The uniaxial elongational rheometer RME—six years of experience. Rheol Acta 39:428–443

    Article  CAS  Google Scholar 

  • Sentmanat ML (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior. Rheol Acta 43:657–669

    Article  CAS  Google Scholar 

  • Venerus DC, Zhu SH, Öttinger HC (1999) Stress and birefringence measurements during the uniaxial elongation of polystyrene melts. J Rheol 43(3):795–813

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich A. Handge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handge, U.A., Schmidheiny, W. A tool for rapid quenching of elongated polymer melts. Rheol Acta 46, 913–919 (2007). https://doi.org/10.1007/s00397-007-0174-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-007-0174-y

Keywords

Navigation