Skip to main content
Log in

The distinction of viscoelastic phases from entangled wormlike micelles and of densely packed multilamellar vesicles on the basis of rheological measurements

  • Original contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

It is shown in this work how two viscoelastic surfactant systems that are both shear thinning but differ in their morphology can be distinguished on the basis of rheological measurements. The measurements were carried out on the novel surfactant system cetyltrimethylammonium 2-hydroxy-1-naphthoate. The phases in this system are produced by mixing cetyltrimethylammonium hydroxide and 2-hydroxy-1-naphthoic acid. With increasing counterion surfactant ratio X, the system has two viscoelastic regions that are separated by a two-phase region. It is shown by cryo-transmission electron microscopy and by small angle neutron scattering that the first viscoelastic region which exists between X=0.5 and X=0.75 contains wormlike micelles, while the second viscoelastic region that exists between X=0.9 and X=1.4 contains multilamellar vesicles. Both phases look alike, are highly viscoelastic, have similar storage modulus values, and are shear thinning. The phases and the properties of the phases for the studied system are very similar as the phases for the system CTA-3-hydroxy-2-naphthoate that has been studied before (see Hassan et al. Langmuir, 12:4350–4357, 1996; Horbaschek et al. J Colloid Interface Sci, 206:439–456, 1998). The two viscoelastic phases show the same shear-thinning behavior, but differ in other rheological results. The phases can most easily be distinguished with the help of normal stress measurements. The wormlike viscoelastic solutions show large normal stresses that give rise to a large Weissenberg effect while the vesicle phases show no Weissenberg effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Arrault J, Grand C, Poon W, Cates M (1997) Stuffed onions: particles in multilamellar vesicles. Europhys Lett 38:625–630

    Article  ADS  Google Scholar 

  • Berret J, Roux D (1995) Rheology of nematic wormlike micelles. J Rheol 39:725–741

    Article  ADS  Google Scholar 

  • Berret J, Appell J, Porte G (1993) Linear rheology of entangled wormlike micelles. Langmuir 9:2851–2854

    Article  Google Scholar 

  • Berret J, Porte G, Decruppe J (1997) Inhomogeneous shear flows of wormlike micelles: a master dynamic phase diagram. Phys Rev 55:1668–1675

    ADS  Google Scholar 

  • Buwalda R, Stuart M, Engbert J (2000) Wormlike micellar and vesicular phases in aqueous solutions of single-tailed surfactants with aromatic counterions. Langmuir 16:6780–6786

    Article  Google Scholar 

  • Candau S, Oda R (2001) Linear viscoelasticity of salt-free wormlike micellar solutions. Colloids Surf A 183–185:5–14

    Article  Google Scholar 

  • Caria A, Khan A (1996) Phase behavior of catanionic surfactant mixtures: sodium bis(2-ethyl)sulfosuccinate-didodecyl dimethylammoniumbromide-water system. Langmuir 12:6282–6290

    Article  Google Scholar 

  • Cates M (1988) Dynamics of living polymers and flexible surfactant micelles: scaling laws for dilution. J Phys France 49:1593–1600

    Article  Google Scholar 

  • Cates M (1993) Isotropic phases of self-assembled amphiphilic aggregates. Phil Trans R Soc Lond A 344:339–356

    Article  ADS  Google Scholar 

  • Cates M (1996) Flow behavior of entangled surfactant micelles. J Phys Condens Matter 8:9167–9176

    Article  ADS  Google Scholar 

  • Cates M, Candau S (1990) Statics and dynamics of wormlike surfactant micelles. J Phys Condens Matter 2:6869–6892

    Article  ADS  Google Scholar 

  • Danino D, Weihs D, Zana R, Orädd G, Lindblom G, Abe M, Talmon Y (2003) Microstructures in the aqueous solutions of a hybrid anionic fluorocarbon/hydrocarbon surfactant. J Colloid Interface Sci 259:382–390

    Article  Google Scholar 

  • Dyre T, Cates M (1992) Living networks: the role of cross-links in entangled surfactant solutions. J Chem Phys 96:1367–1375

    Article  ADS  Google Scholar 

  • Edwards K, Almgren M (1992) Surfactant-induced leakage and structural change of lecithin vesicles: effect of surfactant headgroup size. Langmuir 8:824–832

    Article  Google Scholar 

  • Gradzielski M, Bergmeier M, Müller M, Hoffmann H (1997) Novel gel phase: a cubic phase of densely packed monodisperse, unilamellar vesicles. J Phys Chem B 101:1719–1722

    Article  Google Scholar 

  • Hao J, Hoffmann H, Horbaschek K (2000) A vesicle phase that is prepared by shear from a novel kinetically produced stacked \(L_{\alpha } \)-phase. J Phys Chem B 104:10144–10153

    Article  Google Scholar 

  • Hassan P, Valaulikar A, Manohar C, Kern F, Bourdieu L, Candau S (1996) Vesicle to micelle transition: rheological investigations. Langmuir 12:4350–4357

    Article  Google Scholar 

  • Hassan P, Candau J, Kern F, Manohar C (1998) Rheology of wormlike micelles with varying hydrophobicity of the counterion. Langmuir 14:6025–6029

    Article  Google Scholar 

  • Herrington K, Kaler E, Miller D, Zasadzinski J, Chiruvolu S (1993) Phase behavior of aqueous mixtures of dodecyltrimethylammoniumbromide (DTAB) and sodium dodecylsulfate (SDS). J Phys Chem 97:13792–13802

    Article  Google Scholar 

  • Hoffmann H (1994) Viscoelastic surfactant solutions. ACS Symp Ser 578:1–31

    Google Scholar 

  • Hoffmann H, Thunig C, Schmiedel P, Munkert U (1994) Surfactant systems with multilamellar vesicles and their rheological properties. Langmuir 10:3972–3981

    Article  Google Scholar 

  • Hoffmann H, Thunig C, Schmiedel P, Munkert U (1995) Gels from surfactant solutions with densely packed multilamellar vesicles. Faraday Discuss 101:319–333

    Article  Google Scholar 

  • Hoffmann H, Horbaschek K, Hao J (2000) Classic \(L_{\alpha } \)-phases as opposed to vesicle phases in cationic–anionic surfactant mixtures. J Phys Chem 104:2781–2784

    Google Scholar 

  • Hoffmann H, Horbaschek K, Witte F (2001) New vesicle phases with semipolar additives. J Colloid Interface Sci 235:33–45

    Article  Google Scholar 

  • Horbaschek K, Hoffmann H, Thunig C (1998) Formation and properties of lamellar phases in systems of cationic surfactants and hydroxy-naphthoate. J Colloid Interface Sci 206:439–456

    Article  Google Scholar 

  • Kaler E, Herrington K, Zasadzinski J (1992) Spontaneous vesicles and other solution structures in catanionic mixtures, in “complex fluids”. Mat Res Soc Symp Proc 248:3–10

    Google Scholar 

  • Kawasaki H, Imakayashi R, Tanaka S, Almgren M, Karlsson G, Maeda H (2003) Vesicle–micelle transition and the stability of the vesicle dispersion in mixtures of tetradecyldimethylamine oxide hemihydrochloride and sodium naphthalenesulfonats. J Phys Chem B 107:8661–8668

    Article  Google Scholar 

  • Kern F, Lequeux F, Zana R, Candau S (1994) Dynamical properties of salt-free viscoelastic micellar solutions. Langmuir 10:14–1723

    Article  Google Scholar 

  • Koehler R, Raghavan S, Kaler E (2000) Microstructure and dynamics of wormlike micellar solutions formed by mixing cationic and anionic surfactants. J Phys Chem B 104:11035–11044

    Article  Google Scholar 

  • Laughlin R (1997) Equilibrium vesicles: fact or fiction. Colloids Surf A: Physicochem Eng Asp 128:27–38

    Article  Google Scholar 

  • Makhloufi R, Decruppe J, Ait-ali A, Cresslay R (1995) Rheo-optical study of wormlike micelles undergoing a shear bending flow. Europhys Lett 32:253–258

    Article  ADS  Google Scholar 

  • Mishra B, Samant S, Pradhan P, Mishra S, Manohar C (1993) A new strongly flow birefringent surfactant system. Langmuir 9:894–898

    Article  Google Scholar 

  • Mishra S, Mishra B, Chokappa D, Shah D, Manohar C (1994) Some concepts on design of surfactant gels and vesicles. Bull Mater Sci 17:1103–1108

    Article  Google Scholar 

  • Narayanan J, Manohar C, Kern F, Lequeux F, Candau S (1997) Linear viscoelasticity of wormlike micellar solutions found in the vicinity of a vesicle–micelle transition. Langmuir 13:5235–5243

    Article  Google Scholar 

  • Panizza P, Roux D, Vuillaume V, Lu C, Cates M (1996) Viscoelasticity of the onion phase. Langmuir 12:248–252

    Article  Google Scholar 

  • Porte G, Appell J (1990) Polymerlike behaviour of giant micelles. Europhys Lett 12:185–190

    Article  ADS  Google Scholar 

  • Raghavan S, Kaler E (2001) Highly viscoelastic wormlike micellar solutions formed by cationic surfactants with long unsaturated chains. Langmuir 17:300–306

    Article  Google Scholar 

  • Rehage H, Hoffmann H (1988) Rheological properties of viscoelastic surfactant systems. J Phys Chem 92:4712–4719

    Article  Google Scholar 

  • Ristori S, Appell J, Porte G (1996) Spontaneous formation of monodisperse vesicles in dilute aqueous solutions of PFPE and betaine. Langmuir 12:686–690

    Article  Google Scholar 

  • Salkar R, Hassan P, Samant S, Valaulikar B, Kumar V, Kern F, Candau S, Manohar C (1996) A thermally reversible vesicle to micelle transition driven by a surface solid-fluid transition. J Chem Soc–Chem Commun 10:1223–1224

    Article  Google Scholar 

  • Shikata T, Kotaka T (1991) Entanglement network of thread-like micelles of a cationic detergent. J Non-Cryst Solids 131:831–835

    Article  ADS  Google Scholar 

  • Shikata T, Hirata H, Kotaka T (1990) Micelle formation of detergent molecules in aqueous media. 4. Electrostatic features and phase behavior of cetyltrimethylammonium bromide: salicylic acid micellar solutions. J Phys Chem 94:3702–3706

    Article  Google Scholar 

  • Yamashita Y, Savchuk K, Beck R, Hoffmann H (2004) Vesicle phases from alkyldimethylaminoxides and strong acids. The Hofmeister series of anions and the \({L_{1} } \mathord{\left/ {\vphantom {{L_{1} } {L_{\alpha } }}} \right. \kern-\nulldelimiterspace} {L_{\alpha } }\)-phase transition. Curr Opin Colloid Interface Sci 9:173–177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Abdel-Rahem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Rahem, R., Hoffmann, H. The distinction of viscoelastic phases from entangled wormlike micelles and of densely packed multilamellar vesicles on the basis of rheological measurements. Rheol Acta 45, 781–792 (2006). https://doi.org/10.1007/s00397-006-0101-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-006-0101-7

Keywords

Navigation