Skip to main content
Log in

Production and characterization of liquid crystal/polyacrylonitrile nano-fibers by electrospinning method

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We present that high birefringent nematic liquid crystal, 4–n–pentyl–4’–cyanobiphenyl, was incorporated into the polyacrylonitrile precursor which has a strong polar cyano group so as to produce electrospun nano-fibers, as the first time. Optical textures of nano-fibers were taken by polarized optical microscopy with different angles to determine the orientation degree of liquid crystal molecules in the center of the fiber. The molecules of liquid crystal self-ordered within the core of the fiber. Variation in morphology of liquid crystal/polymer nano-fibers were examined by utilizing both scanning electron microscopy and polarized optical microscopy depending on liquid crystal concentration in precursor and application voltage during electrospinning. Morphology of nano-fibers was significantly affected by electrospinning parameters and liquid crystal/polymer ratio. To understand phase separation and thermal stability of nano-fibers, calorimetric and thermogravimetric analyses were performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Demus D, Goodby J, Gray GW et al (1998) Handbook of liquid crystals. Wiley

  2. Dicker KT, Ratchford D, Casalini R, Thum MD, Wynne JH, Lundin JG (2020) Surfactant modulated phase transitions of liquid crystals confined in electrospun coaxial fibers. Langmuir 36:7916–7924. https://doi.org/10.1021/acs.langmuir.0c01066

    Article  CAS  PubMed  Google Scholar 

  3. Özden P, Mamuk AE, Avcı N (2019) Investigation of the viscoelastic properties of 4-propoxy-biphenyl-4-carbonitrile. Liq Cryst 46:2190–2200. https://doi.org/10.1080/02678292.2019.1614236

    Article  CAS  Google Scholar 

  4. Zappone B, Mamuk AE, Gryn I, Arima V, Zizzari A, Bartolino R, Lacaze E, Petschek R (2020) Analogy between periodic patterns in thin smectic liquid crystal films and the intermediate state of superconductors. Proc Natl Acad Sci U S A 117:17643–17649. https://doi.org/10.1073/pnas.2000849117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Avci N, Hwang SJ (2017) Electrically tunable polarisation-independent blue-phase liquid crystal binary phase grating via phase-separated composite films. Liq Cryst 44:1559–1565. https://doi.org/10.1080/02678292.2017.1303094

    Article  CAS  Google Scholar 

  6. Misra AK, Tripathi PK, Pandey KK, Pandey FP, Singh S, Singh A (2019) Electro-optic switching and memory effect in suspension of ferroelectric liquid crystal and iron oxide nanoparticles. Mater Res Express 6. https://doi.org/10.1088/2053-1591/ab42c3

  7. Kiani S, Zakerhamidi MS, Tajalli H (2016) Hydrogen bonding intermolecular effect on electro-optical response of doped 6PCH nematic liquid crystal with some azo dyes. Opt Mater (Amst) 55:121–129. https://doi.org/10.1016/j.optmat.2016.03.019

    Article  CAS  Google Scholar 

  8. Liang HL, Enz E, Scalia G, Lagerwall J (2011) Liquid crystals in novel geometries prepared by microfluidics and electrospinning. Mol Cryst Liq Cryst 549:69–77. https://doi.org/10.1080/15421406.2011.581140

    Article  CAS  Google Scholar 

  9. Li MH, Keller P, Antonietti M et al (2006) Artificial muscles based on liquid crystal elastomers. Philos Trans R Soc A Math Phys Eng Sci 364:2763–2777. https://doi.org/10.1098/rsta.2006.1853

    Article  CAS  Google Scholar 

  10. Sharma A, Lagerwall JPF (2018) Electrospun composite liquid crystal elastomer fibers. Materials (Basel) 11:393. https://doi.org/10.3390/ma11030393

    Article  CAS  Google Scholar 

  11. Finkelmann H, Kim ST, Muñoz A, Palffy-Muhoray P, Taheri B (2001) Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv Mater 13:1069–1072

    Article  CAS  Google Scholar 

  12. Buyuktanir EA, Frey MW, West JL (2010) Self-assembled, optically responsive nematic liquid crystal/polymer core-shell fibers: formation and characterization. Polymer (Guildf) 51:4823–4830. https://doi.org/10.1016/j.polymer.2010.08.011

    Article  CAS  Google Scholar 

  13. Büyüktanir EA, Gheorghiu N, West JL, Mitrokhin M, Holter B, Glushchenko A (2006) Field-induced polymer wall formation in a bistable smectic-a liquid crystal display. Appl Phys Lett 89:3–6. https://doi.org/10.1063/1.2221887

    Article  CAS  Google Scholar 

  14. Stephenson SW, Johnson DM, Kilburn JI, Mi XD, Rankin CM, Capurso RG (2004) Development of a flexible electronic display using photographic technology. SID Symp Dig Tech Pap 35:774. https://doi.org/10.1889/1.1821394

    Article  CAS  Google Scholar 

  15. Guan Y, Agra-Kooijman DM, Fu S, Jákli A, West JL (2019) Responsive liquid-crystal-clad fibers for advanced textiles and wearable sensors. Adv Mater 31:1–5. https://doi.org/10.1002/adma.201902168

    Article  CAS  Google Scholar 

  16. Kim DK, Hwang M, Lagerwall JPF (2013) Liquid crystal functionalization of electrospun polymer fibers. J Polym Sci B Polym Phys 51:855–867. https://doi.org/10.1002/polb.23285

    Article  CAS  Google Scholar 

  17. Enz E, Baumeister U, Lagerwall J (2009) Coaxial electrospinning of liquid crystal-containing poly(vinylpyrrolidone) microfibres. Beilstein J Org Chem 5:1–8. https://doi.org/10.3762/bjoc.5.58

    Article  CAS  Google Scholar 

  18. Enz E, Lagerwall J (2010) Electrospun microfibres with temperature sensitive iridescence from encapsulated cholesteric liquid crystal. J Mater Chem 20:6866–6872. https://doi.org/10.1039/c0jm01223h

    Article  CAS  Google Scholar 

  19. Kye Y, Kim C, Lagerwall J (2015) Multifunctional responsive fibers produced by dual liquid crystal core electrospinning. J Mater Chem C 3:8979–8985. https://doi.org/10.1039/c5tc01707f

    Article  CAS  Google Scholar 

  20. Reyes CG, Sharma A, Lagerwall JPF (2016) Non-electronic gas sensors from electrospun mats of liquid crystal core fibres for detecting volatile organic compounds at room temperature. Liq Cryst 43:1986–2001. https://doi.org/10.1080/02678292.2016.1212287

    Article  CAS  Google Scholar 

  21. Luzio A, Canesi EV, Bertarelli C, Caironi M (2014) Electrospun polymer fibers for electronic applications. Materials (Basel) 7:906–947. https://doi.org/10.3390/ma7020906

    Article  CAS  Google Scholar 

  22. Han D, Steckl AJ (2013) Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules. ACS Appl Mater Interfaces 5:8241–8245. https://doi.org/10.1021/am402376c

    Article  CAS  PubMed  Google Scholar 

  23. Xue J, Xie J, Liu W, Xia Y (2017) Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res 50:1976–1987. https://doi.org/10.1021/acs.accounts.7b00218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bertocchi MJ, Ratchford DC, Casalini R, Wynne JH, Lundin JG (2018) Electrospun polymer fibers containing a liquid crystal core: insights into semiflexible confinement. J Phys Chem C 122:16964–16971. https://doi.org/10.1021/acs.jpcc.8b04668

    Article  CAS  Google Scholar 

  25. Beevers RB (1964) Dependence of the glass transition temperature of polyacrylonitrile on molecular weight. J Polym Sci A Gen Pap 2:5257–5265. https://doi.org/10.1002/pol.1964.100021221

    Article  CAS  Google Scholar 

  26. Li J, Gauzia S, Wu S-T (2004) High temperature-gradient refractive index liquid crystals. Opt Express 12:2002–2010. https://doi.org/10.1364/OPEX.12.002002

    Article  CAS  PubMed  Google Scholar 

  27. Mashchenko VI, Goponenko AV, Udra CA, et al (2001) Use of polyacrylonitrile as promising material for matrix of liquid crystal composite. In: Belyaev VV, Kompanets in (eds) Advanced display technologies: basic studies of problems in information display.  Proceedings of SPIE, Moscow, 4511, pp 127–132. https://doi.org/10.1117/12.431273

  28. Salim NV, Jin X, Razal JM (2019) Polyacrylonitrile/liquid crystalline graphene oxide composite fibers – towards high performance carbon fiber precursors. Compos Sci Technol 182:107781. https://doi.org/10.1016/j.compscitech.2019.107781

    Article  CAS  Google Scholar 

  29. Chino M, Kitano K, Tanaka K, Akiyama R (2008) Electro-optical properties of liquid crystal-polyacrylonitrile fibre composites. Liq Cryst 35:1225–1235. https://doi.org/10.1080/02678290802509418

    Article  CAS  Google Scholar 

  30. Bogi A, Faetti S (2001) Elastic, dielectric and optical constants of 4′-pentyl-4-cyanobiphenyl. Liq Cryst 28:729–739. https://doi.org/10.1080/02678290010021589

    Article  CAS  Google Scholar 

  31. Rozanski SA, Stannarius R, Groothues H, Kremer F (1996) Dielectric properties of the nematic liquid crystal 4-fi-pentyl-4’-cyanobiphenyl in porous membranes. Liq Cryst 20:59–66

    Article  Google Scholar 

  32. An N, Xu Q, Xu L, Wu S (2006) Orientation structure and mechanical properties of polyacrylonitrile precursors. Adv Mater Res 11–12:383–386. https://doi.org/10.4028/www.scientific.net/amr.11-12.383

    Article  Google Scholar 

  33. Lagerwall JPF, McCann JT, Formo E et al (2008) Coaxial electrospinning of microfibres with liquid crystal in the core. Chem Commun:5420–5422. https://doi.org/10.1039/b810450f

  34. Dierking I (2003) Textures of liquid crystals. Wiley

  35. Wang J, Jákli A, West JL (2016) Morphology tuning of electrospun liquid crystal/polymer fibers. ChemPhysChem 17:3080–3085. https://doi.org/10.1002/cphc.201600430

    Article  CAS  PubMed  Google Scholar 

  36. West JL, Wang JR, Jákli A (2016) Airbrushed liquid crystal/polymer fibers for responsive textiles. Adv Sci Technol 100:43–49. https://doi.org/10.4028/www.scientific.net/AST.100.43

    Article  Google Scholar 

  37. Wang J, Jákli A, West JL (2015) Airbrush formation of liquid crystal/polymer fibers. ChemPhysChem 16:1839–1841. https://doi.org/10.1002/cphc.201500096

    Article  CAS  PubMed  Google Scholar 

  38. Buyuktanir EA, West JL, Frey MW (2011) Optically responsive liquid crystal microfibers for display and nondisplay applications. Emerg Liq Cryst Technol VI 7955:79550P. https://doi.org/10.1117/12.880076

    Article  CAS  Google Scholar 

  39. Wu Y, An Q, Yin J, Hua T, Xie H, Li G, Tang H (2008) Liquid crystal fibers produced by using electrospinning technique. Colloid Polym Sci 286:897–905. https://doi.org/10.1007/s00396-008-1845-7

    Article  CAS  Google Scholar 

  40. Zhang W, Wang Y, Sun C (2007) Characterization on oxidative stabilization of polyacrylonitrile nanofibers prepared by electrospinning. J Polym Res 14:467–474. https://doi.org/10.1007/s10965-007-9130-x

    Article  CAS  Google Scholar 

  41. Enculescu M, Evanghelidis A, Busuioc C et al (2014) Dependence on the dye’s type and concentration of the emissive properties of electrospun dye-doped beaded nanofibers. Dig J Nanomater Biostruct 9:809–816

    Google Scholar 

  42. Yao J, Picot OT, Hughes-Brittain NF, Bastiaansen CWM, Peijs T (2016) Electrospinning of reactive mesogens. Eur Polym J 84:642–651. https://doi.org/10.1016/j.eurpolymj.2016.08.037

    Article  CAS  Google Scholar 

  43. Lin J-D, Chen C-P, Chen L-J, Chuang YC, Huang SY, Lee CR (2016) Morphological appearances and photo-controllable coloration of dye-doped cholesteric liquid crystal/polymer coaxial microfibers fabricated by coaxial electrospinning technique. Opt Express 24:3112–3126. https://doi.org/10.1364/oe.24.003112

    Article  CAS  PubMed  Google Scholar 

  44. Cramariuc B, Cramariuc R, Scarlet R, Manea LR, Lupu IG, Cramariuc O (2013) Fiber diameter in electrospinning process. J Electrost 71:189–198. https://doi.org/10.1016/j.elstat.2012.12.018

    Article  CAS  Google Scholar 

  45. Jacobs V, Anandjiwala RD, Maaza M (2010) The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. J Appl Polym Sci 115:3130–3136. https://doi.org/10.1002/app.31396

    Article  CAS  Google Scholar 

  46. Haider A, Haider S, Kang IK (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11:1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015

    Article  CAS  Google Scholar 

  47. Okutan N, Terzi P, Altay F (2014) Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll 39:19–26. https://doi.org/10.1016/j.foodhyd.2013.12.022

    Article  CAS  Google Scholar 

  48. Khan WS (2017) Chemical and thermal investigations of electrospun polyacrylonitrile nanofibers incorporated with various nanoscale inclusions. J Therm Eng 3:1375–1390. https://doi.org/10.18186/journal-of-thermal-engineering.330180

    Article  CAS  Google Scholar 

  49. Lee S, Kim J, Ku B-C, Kim J, Joh HI (2012) Structural evolution of polyacrylonitrile fibers in stabilization and carbonization. Adv Chem Eng Sci 02:275–282. https://doi.org/10.4236/aces.2012.22032

    Article  CAS  Google Scholar 

  50. Suzuki M, Wilkie CA (1995) The thermal degradation of acrylonitrile-butadiene-styrene terpolymei as studied by TGA/FTIR. Polym Degrad Stab 47:217–221. https://doi.org/10.1016/0141-3910(94)00122-O

    Article  CAS  Google Scholar 

  51. Aslan S, Bal Altuntaş D, Koçak Ç, Kara Subaşat H (2020) Electrochemical evaluation of titanium (IV) oxide/polyacrylonitrile electrospun discharged battery coals as supercapacitor electrodes. Electroanalysis 33:120–128. https://doi.org/10.1002/elan.202060239

    Article  CAS  Google Scholar 

  52. Smith GW, Ventouris GM, West JL (1992) A calorimetric determination of fundamental properties of polymer-dispersed liquid crystals. Mol Cryst Liq Cryst Sci Technol Sect A Mol Cryst Liq Cryst 213:11–30. https://doi.org/10.1080/10587259208028713

    Article  CAS  Google Scholar 

  53. Smith GW (1990) Study of formation, phase behavior, and microdroplet size of a polyurethane-based polymer-dispersed liquid crystal. Mol Cryst Liq Cryst Inc Nonlinear Opt 180:201–222. https://doi.org/10.1080/00268949008042203

    Article  Google Scholar 

  54. Russell GM, Paterson BJA, Imrie CT, Heeks SK (1995) Thermal characterization of polymer-dispersed liquid crystals by differential scanning calorimetry. Chem Mater 7:2185–2189. https://doi.org/10.1021/cm00059a029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank The Center of Research Laboratories, Mugla Sitki Kocman University and also Dr. Nejmettin AVCI for technical support.

Code availability

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

A.E.M. designed research; A.E.M., Ç.K., and Ç.E.D.D. performed research and analyzed data; A.E.M. and Ç.K. wrote the paper.

Corresponding author

Correspondence to Atilla Eren Mamuk.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

See the supplementary material for a supporting analysis of optical and morphological properties of nano-fibers. (DOCX 3578 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamuk, A.E., Koçak, Ç. & Demirci Dönmez, Ç.E. Production and characterization of liquid crystal/polyacrylonitrile nano-fibers by electrospinning method. Colloid Polym Sci 299, 1209–1221 (2021). https://doi.org/10.1007/s00396-021-04842-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04842-5

Keywords

Navigation