Skip to main content
Log in

Tuning the pore architectures of hierarchically porous carbons from high internal phase emulsion template by polyaniline-coated CNTs

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The work reported the preparation of hierarchically porous carbons (HPCs) with adjustable pore architectures using high internal phase emulsion (HIPE) template with the presence of polyaniline-coated carbon nanotubes (PANI-CNTs). PANI-CNTs were obtained via in situ polymerization of aniline in CNT suspension as confirmed by scanning electron microscope (SEM) and thermogravimetric analysis (TGA). Porous polydivinylbenzene (PDVB) monoliths were prepared by polymerizing the continuous phase of HIPE with PANI-CNTs dispersed in the internal phase. After carbonization and activation, HPCs with variable pore architectures were obtained. As observed by SEM, the PANI-CNTs showed notable influence on the pore architectures of PDVBs and HPCs. The void size of PDVB precursor reduced with the increase of the mass ratio of PANI to CNT, as well as the content of PANI-CNTs. Nitrogen adsorption/desorption measurements indicated the coexistence of mesopores and micropores, namely, hierarchical pores. The specific surface area (SSA) of HPC increased along with the content of PANI-CNTs from 1893 to 2392 m2/g. The capability of HPCs as the electrode material of supercapacitor was evaluated via electrochemical tests. The results indicated that the HPC with optimized pore architecture showed a higher specific capacitance (168.6 F/g) than the contrast sample (130.9 F/g) at 1 A/g. The better capacitance performance of HPC obtained with the presence of PANI-CNTs could be attributed to the reasonable hierarchical pores, higher SSA, and higher graphitization degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim B-H, Yang KS, Woo H-G (2011) Thin, bendable electrodes consisting of porous carbon nanofibers via the electrospinning of polyacrylonitrile containing tetraethoxy orthosilicate for supercapacitor. Electrochem Commun 13(10):1042–1046. https://doi.org/10.1016/j.elecom.2011.06.024

    Article  CAS  Google Scholar 

  2. L-b J, X-z Y, Liang J, Zhang J, Wang H, G-m Z (2016) Nanostructured core-shell electrode materials for electrochemical capacitors. J Power Sources 331:408–425. https://doi.org/10.1016/j.jpowsour.2016.09.054

    Article  CAS  Google Scholar 

  3. Woodward RT, Markoulidis F, De Luca F, Anthony DB, Malko D, McDonald TO, Shaffer MSP, Bismarck A (2018) Carbon foams from emulsion-templated reduced graphene oxide polymer composites: electrodes for supercapacitor devices. J Mater Chem A 6(4):1840–1849. https://doi.org/10.1039/c7ta09893f

    Article  CAS  Google Scholar 

  4. Hu B, Qin X, Asiri AM, Alamry KA, Al-Youbi AO, Sun X (2013) Synthesis of porous tubular C/MoS2 nanocomposites and their application as a novel electrode material for supercapacitors with excellent cycling stability. Electrochim Acta 100:24–28. https://doi.org/10.1016/j.electacta.2013.03.133

    Article  CAS  Google Scholar 

  5. Kim SY, Kim B-H, Yang KS, Oshida K (2012) Supercapacitive properties of porous carbon nanofibers via the electrospinning of metal alkoxide-graphene in polyacrylonitrile. Mater Lett 87:157–161. https://doi.org/10.1016/j.matlet.2012.07.093

    Article  CAS  Google Scholar 

  6. Kim B-H, Yang KS, Woo H-G (2012) Physical and electrochemical studies of polyphenylsilane-derived porous carbon nanofibers produced via electrospinning. Electrochim Acta 59:202–206. https://doi.org/10.1016/j.electacta.2011.10.057

    Article  CAS  Google Scholar 

  7. Li Q, Xu Y, Zheng S, Guo X, Xue H, Pang H (2018) Recent Progress in some amorphous materials for supercapacitors. Small 14(28):e1800426. https://doi.org/10.1002/smll.201800426

    Article  CAS  PubMed  Google Scholar 

  8. Xie S, Liu S, Cheng F, Lu X (2018) Recent advances toward achieving high-performance carbon-fiber materials for supercapacitors. ChemElectroChem 5(4):571–582. https://doi.org/10.1002/celc.201701020

    Article  CAS  Google Scholar 

  9. Liu T, Zhang F, Song Y, Li Y (2017) Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J Mater Chem A 5(34):17705–17733. https://doi.org/10.1039/c7ta05646j

    Article  CAS  Google Scholar 

  10. Bandosz TJ, Ren T-Z (2017) Porous carbon modified with sulfur in energy related applications. Carbon 118:561–577. https://doi.org/10.1016/j.carbon.2017.03.095

    Article  CAS  Google Scholar 

  11. Borghei M, Laocharoen N, Kibena-Poldsepp E, Johansson L-S, Campbell J, Kauppinen E, Tammeveski K, Rojas OJ (2017) Porous N,P-doped carbon from coconut shells with high electrocatalytic activity for oxygen reduction: alternative to Pt-C for alkaline fuel cells. Applied Catalysis B-Environmental 204:394–402. https://doi.org/10.1016/j.apcatb.2016.11.029

    Article  CAS  Google Scholar 

  12. Chen Y, Ji S, Wang Y, Dong J, Chen W, Li Z, Shen R, Zheng L, Zhuang Z, Wang D, Li Y (2017) Isolated single Iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angewandte Chemie-International Edition 56(24):6937–6941. https://doi.org/10.1002/anie.201702473

    Article  CAS  PubMed  Google Scholar 

  13. Zhang C, Kong R, Wang X, Xu Y, Wang F, Ren W, Wang Y, Su F, Jiang J-X (2017) Porous carbons derived from hypercrosslinked porous polymers for gas adsorption and energy storage. Carbon 114:608–618. https://doi.org/10.1016/j.carbon.2016.12.064

    Article  CAS  Google Scholar 

  14. Bhadra BN, Lee JK, Cho C-W, Jhung SH (2018) Remarkably efficient adsorbent for the removal of bisphenol A from water: bio-MOF-1-derived porous carbon. Chem Eng J 343:225–234. https://doi.org/10.1016/j.cej.2018.03.004

    Article  CAS  Google Scholar 

  15. Du W, Xu Q, Zhan R, Zhang Y, Luo Y, Xu M (2018) Synthesis of hollow porous carbon microspheres and their application to room-temperature Na-S batteries. Mater Lett 221:66–69. https://doi.org/10.1016/j.matlet.2018.03.090

    Article  CAS  Google Scholar 

  16. Kim B-H, Yang KS, Woo H-G, Oshida K (2011) Supercapacitor performance of porous carbon nanofiber composites prepared by electrospinning polymethylhydrosiloxane (PMHS)/polyacrylonitrile (PAN) blend solutions. Synth Met 161(13–14):1211–1216. https://doi.org/10.1016/j.synthmet.2011.04.005

    Article  CAS  Google Scholar 

  17. Yang W, Yang W, Song A, Gao L, Su L, Shao G (2017) Supercapacitance of nitrogen-sulfur-oxygen co-doped 3D hierarchical porous carbon in aqueous and organic electrolyte. J Power Sources 359:556–567. https://doi.org/10.1016/j.jpowsour.2017.05.108

    Article  CAS  Google Scholar 

  18. Hu W, Xie F, Li Y, Wu Z, Tian K, Wang M, Pan L, Li L (2017) Hierarchically porous carbon derived from polyHIPE for supercapacitor and deionization applications. Langmuir 33(46):13364–13375. https://doi.org/10.1021/acs.langmuir.7b03175

    Article  CAS  PubMed  Google Scholar 

  19. Israel S, Gurevitch I, Silverstein MS (2015) Carbons with a hierarchical porous structure through the pyrolysis of hypercrosslinked emulsion-templated polymers. Polymer 72:453–463. https://doi.org/10.1016/j.polymer.2015.02.055

    Article  CAS  Google Scholar 

  20. Cohen N, Silverstein MS (2011) Synthesis of emulsion-templated porous polyacrylonitrile and its pyrolysis to porous carbon monoliths. Polymer 52(2):282–287. https://doi.org/10.1016/j.polymer.2010.11.026

    Article  CAS  Google Scholar 

  21. Gross AF, Nowak AP (2010) Hierarchical carbon foams with independently tunable mesopore and macropore size distributions. Langmuir 26(13):11378–11383. https://doi.org/10.1021/la1007846

    Article  CAS  PubMed  Google Scholar 

  22. Wang C, Wu D, Wang H, Gao Z, Xu F, Jiang K (2018) Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance. J Colloid Interface Sci 523:133–143. https://doi.org/10.1016/j.jcis.2018.03.009

    Article  CAS  PubMed  Google Scholar 

  23. Yang W, Hou L, Xu X, Li Z, Ma X, Yang F, Li Y (2018) Carbon nitride template-directed fabrication of nitrogen-rich porous graphene-like carbon for high performance supercapacitors. Carbon 130:325–332. https://doi.org/10.1016/j.carbon.2018.01.032

    Article  CAS  Google Scholar 

  24. Zhu SY, Tian H, Wang N, Chen B, Mai YY, Feng XL (2018) Patterning graphene surfaces with Iron-oxide-embedded mesoporous polypyrrole and derived N-doped carbon of tunable pore size. Small 14(9). https://doi.org/10.1002/smll.201702755

    Article  Google Scholar 

  25. Tian H, Zhu SY, Xu FG, Mao WT, Wei H, Mai YY, Feng XL (2017) Growth of 2D mesoporous polyaniline with controlled pore structures on ultrathin MoS2 nanosheets by block copolymer self-assembly in solution. ACS Appl Mater Interfaces 9(50):43975–43982. https://doi.org/10.1021/acsami.7b13666

    Article  CAS  PubMed  Google Scholar 

  26. Tian H, Lin ZX, Xu FG, Zheng JX, Zhuang XD, Mai YY, Feng XL (2016) Quantitative control of pore size of mesoporous carbon nanospheres through the self-assembly of diblock copolymer micelles in solution. Small 12(23):3155–3163. https://doi.org/10.1002/smll.201600364

    Article  CAS  PubMed  Google Scholar 

  27. Woodward RT, Fam DWH, Anthony DB, Hong J, McDonald TO, Petit C, Shaffer MSP, Bismarck A (2016) Hierarchically porous carbon foams from Pickering high internal phase emulsions. Carbon 101:253–260. https://doi.org/10.1016/j.carbon.2016.02.002

    Article  CAS  Google Scholar 

  28. Deshmukh AB, Nalawade AC, Karbhal I, Qureshi MS, Shelke MV (2018) Electrochemical capacitive energy storage in polyHIPE derived nitrogen enriched hierarchical porous carbon nanosheets. Carbon 128:287–295. https://doi.org/10.1016/j.carbon.2017.11.080

    Article  CAS  Google Scholar 

  29. Woodward RT, Jobbe-Duval A, Marchesini S, Anthony DB, Petit C, Bismarck A (2017) Hypercrosslinked polyHIPEs as precursors to designable, hierarchically porous carbon foams. Polymer 115:146–153. https://doi.org/10.1016/j.polymer.2017.03.042

    Article  CAS  Google Scholar 

  30. Kapilov-Buchman K, Portal L, Zhang Y, Fechler N, Antonietti M, Silverstein MS (2017) Hierarchically porous carbons from an emulsion-templated, urea-based deep eutectic. J Mater Chem A 5(31):16376. https://doi.org/10.1039/c7ta01958k

    Article  CAS  Google Scholar 

  31. Senthil Raja D, Luo JH, Chang TG, Lo SH, Wu CY, Lin CH (2013) Synthesis, crystal structure, and luminescence properties of a new calcium(II) coordination polymer based on L-malic acid. J Chem 2013:1–7. https://doi.org/10.1007/s00396-019-04594-3

  32. Bai Q, Xiong Q, Li C, Shen Y, Uyama H (2018) Hierarchical porous carbons from a sodium alginate/bacterial cellulose composite for high-performance supercapacitor electrodes. Appl Surf Sci 455:795–807. https://doi.org/10.1016/j.apsusc.2018.05.006

    Article  CAS  Google Scholar 

  33. Sun F, Gao J, Pi X, Wang L, Yang Y, Qu Z, Wu S (2017) High performance aqueous supercapacitor based on highly nitrogen doped carbon nanospheres with unimodal mesoporosity. J Power Sources 337:189–196. https://doi.org/10.1016/j.jpowsour.2016.10.086

    Article  CAS  Google Scholar 

  34. Wang Y, Fugetsu B, Wang Z, Gong W, Sakata I, Morimoto S, Hashimoto Y, Endo M, Dresselhaus M, Terrones M (2017) Nitrogen-doped porous carbon monoliths from polyacrylonitrile (PAN) and carbon nanotubes as electrodes for supercapacitors. Sci rep 7. https://doi.org/10.1038/srep40259

  35. Zhang Z, Wang L, Li Y, Wang Y, Zhang J, Guan G, Pan Z, Zheng G, Peng H (2017) Nitrogen-doped core-sheath carbon nanotube array for highly stretchable supercapacitor. Adv Energy Mater 7(5). https://doi.org/10.1002/aenm.201601814

    Article  Google Scholar 

  36. Lin Z, Xiang XT, Peng SJ, Jiang XC, Hou LX (2018) Facile synthesis of chitosan-based carbon with rich porous structure for supercapacitor with enhanced electrochemical performance. J Electroanal Chem 823:563–572. https://doi.org/10.1016/j.jelechem.2018.06.031

    Article  CAS  Google Scholar 

  37. Lin Z, Xiang XT, Chen K, Peng SJ, Jiang XC, Hou LX (2019) Facile synthesis of MnO2 nanorods grown on porous carbon for supercapacitor with enhanced electrochemical performance. J Colloid Interface Sci 540:466–475. https://doi.org/10.1016/j.jcis.2019.01.053

    Article  CAS  PubMed  Google Scholar 

  38. Kim H, Ahn KH, Lee SJ (2017) Conductive poly(high internal phase emulsion) foams incorporated with polydopamine-coated carbon nanotubes. Polymer 110:187–195. https://doi.org/10.1016/j.polymer.2017.01.007

    Article  CAS  Google Scholar 

  39. Wang M, Liu H, Zhai DD, Chen XY, Zhang ZJ (2019) In-situ synthesis of highly nitrogen, sulfur co-doped carbon nanosheets from melamine-formaldehyde-thiourea resin with improved cycling stability and energy density for supercapacitors. J Power Sources 416:79–88. https://doi.org/10.1016/j.jpowsour.2019.01.092

    Article  CAS  Google Scholar 

  40. Chen YX, Shen M, Fu X, Yao HC, Zhang XM, Liu YQ, Liu XY, Yao KX (2019) Enhancing supercapacitive performance of hierarchical carbon by introducing extra-framework cations. Mater Lett 253:416–419. https://doi.org/10.1016/j.matlet.2019.07.072

    Article  CAS  Google Scholar 

  41. Zhao YL, Zhao Z, Zhang J, Wei MZ, Xiao LQ, Hou LX (2018) Distinctive performance of gemini surfactant in the preparation of hierarchically porous carbons via high-internal-phase emulsion template. Langmuir 34(40):12100–12108. https://doi.org/10.1021/acs.langmuir.8b02562

    Article  CAS  PubMed  Google Scholar 

  42. Shi K, Ren M, Zhitomirsky I (2014) Activated carbon-coated carbon nanotubes for energy storage in supercapacitors and capacitive water purification. ACS Sustain Chem Eng 2(5):1289–1298. https://doi.org/10.1021/sc500118r

    Article  CAS  Google Scholar 

  43. Lee MS, Whang DR, Song YH, Kim JT, Yang MH, Choi UH, Chang DW (2019) Effects of pyridine and pyrrole moieties on supercapacitive properties of imine-rich nitrogen-doped graphene. Carbon 152:915–923. https://doi.org/10.1016/j.carbon.2019.06.082

    Article  CAS  Google Scholar 

  44. Peng H, Ma GF, Sun KJ, Zhang ZG, Yang Q, Lei ZQ (2016) Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors. Electrochim Acta 190:862–871. https://doi.org/10.1016/j.electacta.2015.12.195

    Article  CAS  Google Scholar 

  45. Hao XD, Wang J, Ding B, Wang Y, Chang Z, Dou H, Zhang XG (2017) Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors. J Power Sources 352:34–41. https://doi.org/10.1016/j.jpowsour.2017.03.088

    Article  CAS  Google Scholar 

  46. Ma GF, Li JD, Sun KJ, Peng H, Feng EK, Lei ZQ (2017) Tea-leaves based nitrogen-doped porous carbons for high-performance supercapacitors electrode. J Solid State Electrochem 21(2):525–535. https://doi.org/10.1007/s10008-016-3389-y

    Article  CAS  Google Scholar 

  47. Sun KJ, Li JD, Peng H, Feng EK, Ma GF, Lei ZQ (2017) Promising nitrogen-doped porous nanosheets carbon derived from pomegranate husk as advanced electrode materials for supercapacitors. Ionics 23(4):985–996. https://doi.org/10.1007/s11581-016-1897-5

    Article  CAS  Google Scholar 

Download references

Funding

Thanks to the programs including the National Natural Science Foundation of China (no. 51703030), Natural Science Foundation of Fujian province (2017 J01695), National Natural Science Foundation of China (nos. 21676057and 21504025), and Program for New Century Excellent Talents in Fujian Province University (NCETFJ) for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yulai Zhao or Linxi Hou.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhang, J., Wei, M. et al. Tuning the pore architectures of hierarchically porous carbons from high internal phase emulsion template by polyaniline-coated CNTs. Colloid Polym Sci 298, 179–191 (2020). https://doi.org/10.1007/s00396-019-04594-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04594-3

Keywords

Navigation