Skip to main content
Log in

Preparation of monometallic and bimetallic alloy nanoparticles stabilized with sulfobetaine-based block copolymer and their catalytic activities

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Zwitterionic sulfobetaine-containing diblock copolymer, poly(ethylene glycol)methyl ether-block-poly[3-dimethyl(methacryloyloxy ethyl)ammonium propane sulfonate] (MPEG-b-PSBMA), was successfully synthesized and utilized as a stabilizer to prepare mono- and bimetallic nanoparticles. Precursor poly(ethylene glycol)methyl ether-block-poly[2-(N-dimethylamino)ethyl methacrylate] (MPEG-b-PDMA) diblock copolymer was first synthesized via atom transfer radical polymerization. PDMA blocks were reacted with 1,3-propanesultone to obtain MPEG-b-PSBMA diblock copolymer. Spherical monometallic gold (Au), platinum (Pt) and bimetallic alloy gold/platinum (Au/Pt), gold/silver (Au/Ag), and silver/platinum (Ag/Pt) nanoparticles (with a diameter below 8.0 nm) were synthesized in aqueous media via sonochemical method using diblock copolymer as stabilizer. The zwitterionic sulfobetaine block copolymer provided thermodynamic (5 days at 65 °C) and kinetic (1 year at 25 °C) stability to the synthesized NPs without aggregation. Zwitterionic PSBMA blocks of MPEG-b-PSBMA diblock copolymer showed an upper critical solution temperature (UCST) in aqueous media. This thermo-responsive block copolymer provided better stabilization to metal NPs as compared with MPEG and PSBMA homopolymers. The structures of bi- and monometallic NP dispersions were characterized by measuring surface plasmon resonance and transmission electron microscopy. The prepared metal NP/polymer dispersions showed good catalytic activities (Ag/Pt > Au/Ag > Au > Au/Pt > Pt) in the reduction of p-nitrophenol to p-aminophenol.

A zwitterionic sulfobetaine diblock copolymer was successfully synthesized and found to be a good stabilizer in the synthesis of metal nanoparticles due to its double hydrophilic nature. The prepared mono- and alloy bimetallic NPs had average diameters smaller than 8.0 nm. The metal NP dispersions were stable in aqueous media without aggregations, not only for 1 year at 25 °C but also for 5 days at 65 °C. Their catalytic activities in the reduction of p-nitrophenol were determined to be in the order of Ag/Pt > Au/Ag > Au > Au/Pt > Pt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Garcia-Barrasa J, Lopez-de-Luzuriaga JM, Monge M (2011) Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. Cent Eur J Chem 9(1):7–19. https://doi.org/10.2478/s11532-010-0124-x

    Article  CAS  Google Scholar 

  2. Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102. https://doi.org/10.1021/cr030063a

    Article  CAS  PubMed  Google Scholar 

  3. Zaleska-Medynska A, Marchelek M, Diak M, Grabowska E (2016) Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv Colloid Interface Sci 229:80–107. https://doi.org/10.1016/j.cis.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  4. Haruta M (2003) When gold is not Noble: catalysis by nanoparticles. Chem Rec 3(2):75–87. https://doi.org/10.1002/tcr.10053

    Article  CAS  PubMed  Google Scholar 

  5. Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102(10):3757–3778. https://doi.org/10.1021/cr010350j

    Article  CAS  PubMed  Google Scholar 

  6. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles - novel materials for chemical and physical applications. New J Chem 22(11):1179–1201. https://doi.org/10.1039/A805753B

    Article  CAS  Google Scholar 

  7. Singh HB, Mishra S, Fraceto LF, de Lima R (2018) Emerging trends in agri-nanotechnology: fundamental and applied aspects. CABI

  8. Zahmakiran M, Ozkar S (2011) Metal nanoparticles in liquid phase catalysis; from recent advances to future goals. Nanoscale 3(9):3462–3481. https://doi.org/10.1039/c1nr10201j

    Article  CAS  PubMed  Google Scholar 

  9. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346. https://doi.org/10.1021/Cr030698+

    Article  CAS  Google Scholar 

  10. Hu H, Xin JH, Hu H, Wang X, Miao D, Liu Y (2015) Synthesis and stabilization of metal nanocatalysts for reduction reactions - a review. J Mater Chem A 3(21):11157–11182. https://doi.org/10.1039/C5TA00753D

    Article  CAS  Google Scholar 

  11. Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112(8):4469–4506. https://doi.org/10.1021/cr3000785

    Article  CAS  PubMed  Google Scholar 

  12. Yang W, Guo W, Gong X, Zhang B, Wang S, Chen N, Yang W, Tu Y, Fang X, Chang J (2015) Facile synthesis of Gd–Cu–In–S/ZnS bimodal quantum dots with optimized properties for tumor targeted fluorescence/MR in vivo imaging. Acs Appl Mater Interfaces 7(33):18759–18768. https://doi.org/10.1021/acsami.5b05372

    Article  CAS  PubMed  Google Scholar 

  13. Jiang HL, Xu Q (2011) Recent progress in synergistic catalysis over heterometallic nanoparticles. J Mater Chem 21(36):13705–13725. https://doi.org/10.1039/c1jm12020d

    Article  CAS  Google Scholar 

  14. Lü J, Yang Y, Gao J, Duan H, Lü C (2018) Thermoresponsive amphiphilic block copolymer-stablilized gold nanoparticles: synthesis and high catalytic properties. Langmuir 34(28):8205–8214. https://doi.org/10.1021/acs.langmuir.8b00414

    Article  CAS  PubMed  Google Scholar 

  15. Wang D, Liu B, Lü J, Lü C (2016) Facile synthesis of thermo-responsive episulfide group-containing diblock copolymers as robust protecting ligands of gold nanoparticles for catalytic applications. RSC Adv 6(44):37487–37499. https://doi.org/10.1039/C6RA02885C

    Article  CAS  Google Scholar 

  16. Que Y, Feng C, Zhang S, Huang X (2015) Stability and catalytic activity of PEG-b-PS-capped gold nanoparticles: a matter of PS chain length. J Phys Chem C 119(4):1960–1970. https://doi.org/10.1021/jp511850v

    Article  CAS  Google Scholar 

  17. Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28(7):1107–1170. https://doi.org/10.1016/S0079-6700(03)00015-7

    Article  CAS  Google Scholar 

  18. Chen J, Spear SK, Huddleston JG, Rogers RD (2005) Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem 7(2):64–82. https://doi.org/10.1039/b413546f

    Article  CAS  Google Scholar 

  19. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114(3):343–347. https://doi.org/10.1016/j.jconrel.2006.06.017

    Article  CAS  PubMed  Google Scholar 

  20. Dhakal TR, Mishra SR, Glenn Z, Rai BK (2012) Synergistic effect of PVP and PEG on the behavior of silver nanoparticle-polymer composites. J Nanosci Nanotechnol 12(8):6389–6396. https://doi.org/10.1166/jnn.2012.6561

    Article  CAS  PubMed  Google Scholar 

  21. Durand-Gasselin C, Koerin R, Rieger J, Lequeux N, Sanson N (2014) Colloidal stability of zwitterionic polymer-grafted gold nanoparticles in water. J Colloid Interface Sci 434:188–194. https://doi.org/10.1016/j.jcis.2014.07.048

    Article  CAS  PubMed  Google Scholar 

  22. Kocak G, Ulker D, Tuncer C, Baker SB, Butun V (2018) Use of Sulfobetaine-based block copolymer as stabilizer in silver nanoparticle production and catalytic activity studies. J Nanosci Nanotechnol 18(4):2521–2529. https://doi.org/10.1166/jnn.2018.14338

    Article  CAS  PubMed  Google Scholar 

  23. Zheng LC, Sundaram HS, Wei ZY, Li CC, Yuan ZF (2017) Applications of zwitterionic polymers. React Funct Polym 118:51–61. https://doi.org/10.1016/j.reactfunctpolym.2017.07.006

    Article  CAS  Google Scholar 

  24. Housni A, Zhao Y (2010) Gold nanoparticles functionalized with block copolymers displaying either LCST or UCST thermosensitivity in aqueous solution. Langmuir 26(15):12933–12939. https://doi.org/10.1021/la1017856

    Article  CAS  PubMed  Google Scholar 

  25. Aditya T, Pal A, Pal T (2015) Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts. Chem Commun 51(46):9410–9431. https://doi.org/10.1039/C5CC01131K

    Article  CAS  Google Scholar 

  26. Chen H, Yuan L, Song W, Wu ZK, Li D (2008) Biocompatible polymer materials: role of protein-surface interactions. Prog Polym Sci 33(11):1059–1087. https://doi.org/10.1016/j.progpolymsci.2008.07.006

    Article  CAS  Google Scholar 

  27. Weaver JVM, Armes SP, Butun V (2002) Synthesis and aqueous solution properties of a well-defined thermo-responsive schizophrenic diblock copolymer. Chem Commun (18):2122–2123. https://doi.org/10.1039/b207251n

  28. Saeki S, Kuwahara N, Nakata M, Kaneko M (1976) Upper and lower critical solution temperatures in poly (ethylene glycol) solutions. Polymer 17(8):685–689. https://doi.org/10.1016/0032-3861(76)90208-1

    Article  CAS  Google Scholar 

  29. Nazir R, Fageria P, Basu M, Pande S (2017) Decoration of carbon nitride surface with bimetallic nanoparticles (Ag/Pt, Ag/Pd, and Ag/Au) via galvanic exchange for hydrogen evolution reaction. J Phys Chem C 121(36):19548–19558. https://doi.org/10.1021/acs.jpcc.7b04595

    Article  CAS  Google Scholar 

  30. Liz-Marzan LM, Philipse AP (1995) Stable hydrosols of metallic and bimetallic nanoparticles immobilized on imogolite fibers. J Phys Chem-Us 99(41):15120–15128. https://doi.org/10.1021/j100041a031

    Article  CAS  Google Scholar 

  31. Cheng J, Bordes R, Olsson E, Holmberg K (2013) One-pot synthesis of porous gold nanoparticles by preparation of Ag/Au nanoparticles followed by dealloying. Colloid Surface A 436:823–829. https://doi.org/10.1016/j.colsurfa.2013.08.023

    Article  CAS  Google Scholar 

  32. Chu CC, Su ZH (2014) Facile synthesis of AuPt alloy nanoparticles in polyelectrolyte multi layers with enhanced catalytic activity for reduction of 4-Nitrophenol. Langmuir 30(50):15345–15350. https://doi.org/10.1021/la5042019

    Article  CAS  PubMed  Google Scholar 

  33. Taniguchi S, Zinchenko A, Murata S (2016) Fabrication of bimetallic core-shell and alloy Ag-Au nanoparticles on a DNA template. Chem Lett 45(6):610–612. https://doi.org/10.1246/cl.160180

    Article  CAS  Google Scholar 

  34. Zhang HJ, Cao YN, Lu LL, Cheng Z, Zhang SW (2015) Trimetallic Au/Pt/Rh nanoparticles as highly active catalysts for aerobic glucose oxidation. Metall Mater Trans B Process Metall Mater Process Sci 46(1):523–530. https://doi.org/10.1007/s11663-014-0219-4

    Article  CAS  Google Scholar 

  35. Koh HD, Park S, Russell TP (2010) Fabrication of Pt/Au concentric spheres from triblock copolymer. ACS Nano 4(2):1124–1130. https://doi.org/10.1021/nn9016026

    Article  CAS  PubMed  Google Scholar 

  36. Panigrahi S, Kundu S, Ghosh SK, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6(4):411–414. https://doi.org/10.1007/s11051-004-6575-2

    Article  CAS  Google Scholar 

  37. Kocak G, Butun V (2015) Synthesis and stabilization of Pt nanoparticles in core cross-linked micelles prepared from an amphiphilic diblock copolymer. Colloid Polym Sci 293(12):3563–3572. https://doi.org/10.1007/s00396-015-3727-0

    Article  CAS  Google Scholar 

  38. Henglein A, Ershov BG, Malow M (1995) Absorption-spectrum and some chemical-reactions of colloidal platinum in aqueous-solution. J Phys Chem-Us 99(38):14129–14136. https://doi.org/10.1021/j100038a053

    Article  CAS  Google Scholar 

  39. Gonzalez CM, Liu Y, Scaiano JC (2009) Photochemical strategies for the facile synthesis of gold-silver alloy and core-shell bimetallic nanoparticles. J Phys Chem C 113(27):11861–11867. https://doi.org/10.1021/jp902061v

    Article  CAS  Google Scholar 

  40. Tunc I, Guvenc HO, Sezen H, Suzer S, Correa-Duarte MA, Liz-Marzan LM (2008) Optical response of Ag-Au bimetallic nanoparticles to electron storage in aqueous medium. J Nanosci Nanotechnol 8(6):3003–3007. https://doi.org/10.1166/jnn.2008.157

    Article  CAS  PubMed  Google Scholar 

  41. Mallin MP, Murphy CJ (2002) Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles. Nano Lett 2(11):1235–1237. https://doi.org/10.1021/nl025774n

    Article  CAS  Google Scholar 

  42. Wu ML, Lai LB (2004) Synthesis of Pt/Ag bimetallic nanoparticles in water-in-oil microemulsions. Colloid Surface A 244(1–3):149–157. https://doi.org/10.1016/j.colsurfa.2004.06.027

    Article  CAS  Google Scholar 

  43. Zhang GJ, Zheng HM, Shen M, Wang L, Wang XS (2015) Green synthesis and characterization of Au@Pt core-shell bimetallic nanoparticles using gallic acid. J Phys Chem Solids 81:79–87. https://doi.org/10.1016/j.jpcs.2014.12.012

    Article  CAS  Google Scholar 

  44. Remita S, Mostafavi M, Delcourt MO (1996) Bimetallic Ag-Pt and Au-Pt aggregates synthesized by radiolysis. Radiat Phys Chem 47(2):275–279. https://doi.org/10.1016/0969-806x(94)00172-G

    Article  CAS  Google Scholar 

  45. Tan RLS, Song X, Chen B, Chong WH, Fang Y, Zhang H, Wei J, Chen H (2016) Levelling the playing field: screening for synergistic effects in coalesced bimetallic nanoparticles. Nanoscale 8(6):3447–3453. https://doi.org/10.1039/C5NR07763J

    Article  CAS  PubMed  Google Scholar 

  46. Begum R, Rehan R, Farooqi ZH, Butt Z, Ashraf S (2016) Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: past, present, and future. J Nanopart Res 18(8):231. https://doi.org/10.1007/s11051-016-3536-5

    Article  CAS  Google Scholar 

  47. Sreekanth D, Sivaramakrishna D, Himabindu V, Anjaneyulu Y (2009) Thermophilic degradation of phenolic compounds in lab scale hybrid up flow anaerobic sludge blanket reactors. J Hazard Mater 164(2–3):1532–1539. https://doi.org/10.1016/j.jhazmat.2008.09.070

    Article  CAS  PubMed  Google Scholar 

  48. Shen YY, Sun Y, Zhou LN, Li YJ, Yeung ES (2014) Synthesis of ultrathin PtPdBi nanowire and its enhanced catalytic activity towards p-nitrophenol reduction. J Mater Chem A 2(9):2977–2984. https://doi.org/10.1039/c3ta14502f

    Article  CAS  Google Scholar 

  49. Zhao QH, Liu XY, Sun ML, Du CF, Liu ZL (2015) Natural kaolin derived stable SBA-15 as a support for Fe/BiOCl: a novel and efficient Fenton-like catalyst for the degradation of 2-nitrophenol. RSC Adv 5(46):36948–36956. https://doi.org/10.1039/c5ra01804h

    Article  CAS  Google Scholar 

  50. Ghosh A, Khurana M, Chauhan A, Takeo M, Chakraborti AK, Jain RK (2010) Degradation of 4-Nitrophenol, 2-Chloro-4-nitrophenol, and 2,4-Dinitrophenol by Rhodococcus imtechensis RKJ300. Environ Sci Technol 44(3):1069–1077. https://doi.org/10.1021/es9034123

    Article  CAS  Google Scholar 

  51. Takato M, Yusuke M, Motoshi M, Tomoo M, Koichiro J, Kiyotomi K (2012) Design of a silver–cerium dioxide core–shell nanocomposite catalyst for chemoselective reduction reactions. Angew Chem Int Ed 51(1):136–139. https://doi.org/10.1002/anie.201106244

    Article  CAS  Google Scholar 

  52. Herves P, Perez-Lorenzo M, Liz-Marzan LM, Dzubiella J, Lu Y, Ballauff M (2012) Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem Soc Rev 41(17):5577–5587. https://doi.org/10.1039/c2cs35029g

    Article  CAS  PubMed  Google Scholar 

  53. Zhang X, Su ZH (2012) Polyelectrolyte-multilayer-supported Au@Ag core-shell nanoparticles with high catalytic activity. Adv Mater 24(33):4574–4577. https://doi.org/10.1002/adma.201201712

    Article  CAS  PubMed  Google Scholar 

  54. Fu H, Yang X, Jiang X, Yu A (2013) Bimetallic Ag–au nanowires: synthesis, growth mechanism, and catalytic properties. Langmuir 29(23):7134–7142. https://doi.org/10.1021/la400753q

    Article  CAS  PubMed  Google Scholar 

  55. Endo T, Yoshimura T, Esumi K (2005) Synthesis and catalytic activity of gold-silver binary nanoparticles stabilized by PAMAM dendrimer. J Colloid Interface Sci 286(2):602–609. https://doi.org/10.1016/j.jcis.2005.01.057

    Article  CAS  PubMed  Google Scholar 

  56. Kocak G, Solmaz G, Dikmen Z, Butun V (2018) Preparation of cross-linked micelles from glycidyl methacrylate based block copolymers and their usages as nanoreactors in the preparation of gold nanoparticles. J Polym Sci Pol Chem 56(5):514–526. https://doi.org/10.1002/pola.28922

    Article  CAS  Google Scholar 

  57. Pandey S, Mishra SB (2014) Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum. Carbohyd Polym 113:525–531. https://doi.org/10.1016/j.carbpol.2014.07.047

    Article  CAS  Google Scholar 

  58. Dwivedi C, Chaudhary A, Srinivasan S, Nandi CK (2018) Polymer stabilized bimetallic alloy nanoparticles: synthesis and catalytic application. Colloid Interface Sci 24:62–67. https://doi.org/10.1016/j.colcom.2018.04.001

    Article  CAS  Google Scholar 

  59. Holden MS, Nick KE, Hall M, Milligan JR, Chen Q, Perry CC (2014) Synthesis and catalytic activity of pluronic stabilized silver-gold bimetallic nanoparticles. RSC Adv 4(94):52279–52288. https://doi.org/10.1039/c4ra07581a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheng P, Liu Y, Yi Z, Wang X, Li M, Liu Q, Liu K, Wang D (2018) In situ prepared nanosized Pt-Ag/PDA/PVA-co-PE nanofibrous membrane for highly-efficient catalytic reduction of p-nitrophenol. Compos Commun 9:11–16. https://doi.org/10.1016/j.coco.2018.04.004

    Article  Google Scholar 

  61. Lv ZS, Zhu XY, Meng HB, Feng JJ, Wang AJ (2019) One-pot synthesis of highly branched Pt@Ag core-shell nanoparticles as a recyclable catalyst with dramatically boosting the catalytic performance for 4-nitrophenol reduction. J Colloid Interface Sci 538:349–356. https://doi.org/10.1016/j.jcis.2018.11.109

    Article  CAS  PubMed  Google Scholar 

  62. Ye WC, Yu J, Zhou YX, Gao DQ, Wang DA, Wang CM, Xue DS (2016) Green synthesis of Pt-Au dendrimer-like nanoparticles supported on polydopamine-functionalized graphene and their high performance toward 4-nitrophenol reduction. Appl Catal B Environ 181:371–378. https://doi.org/10.1016/j.apcatb.2015.08.013

    Article  CAS  Google Scholar 

  63. Zinchenko A, Che Y, Taniguchi S, Lopatina LI, Sergeyev GV, Murata S (2016) Metallization of DNA hydrogel: application of soft matter host for preparation and nesting of catalytic nanoparticles. J Nanopart Res 18(7):179. https://doi.org/10.1007/s11051-016-3480-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Central Research Laboratory and Application Center of Eskisehir Osmangazi University for the study with NMR and TEM instruments which was financed by ESOGU-BAP project (GN: 20171905).

Funding

This work was supported by the Commission of Scientific Research Projects of Eskisehir Osmangazi University (ESOGU-BAP, GN: 201119006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vural Butun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1635 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulker, D., Kocak, G., Tuncer, C. et al. Preparation of monometallic and bimetallic alloy nanoparticles stabilized with sulfobetaine-based block copolymer and their catalytic activities. Colloid Polym Sci 297, 1067–1078 (2019). https://doi.org/10.1007/s00396-019-04523-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04523-4

Keywords

Navigation