Skip to main content
Log in

Deswelling induced morphological changes in dual pH- and temperature-responsive ultra-low cross-linked poly(N-isopropyl acrylamide)-co-acrylic acid microgels

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Poly(N-isopropylacrylamide) microgels prepared without exogenous cross-linker are extremely “soft” as a result of their very low cross-linking density, with network connectivity arising only from the self-crosslinking of pNIPAm chains. As a result of this extreme softness, our group and others have taken interest in using these materials in a variety of bioengineering applications, while also pursuing studies of their fundamental properties. Here, we report deswelling triggered structural changes in poly(N-isopropylacrylamide-co-acrylic acid) (ULC10AAc) microgels prepared by precipitation polymerization. Dynamic light scattering suggests that the deswelling of these particles not only depends on the collapse of the pNIPAm chains but is also influenced by the ionization state of the acrylic acid moieties present in the copolymer. The ULC10AAc microgel behaves like a traditional cross-linked pNIPAm microgel at pH 3.5, showing a sharp decrease in the hydrodynamic diameter around the lower critical solution temperature (LCST) of pNIPAm. As the pH is increased to 4.5, we observe multiple transitions in the deswelling curve, suggesting inhomogeneity in the structure and/or composition of the microgels. At pH 6.5, the microgels cease to be thermoresponsive over the studied temperature range due to increased charge repulsion between the fully deprotonated AAc groups and an increase in gel osmotic pressure due to solvated counterion ingress. Atomic force microscopy images of particles deposited at different temperatures reveal a temperature-induced morphological change, with punctate structures forming inside microgels at pH 4.5 and 6.5 and temperature above the gel volume phase transition temperature (VPTT).

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kawaguchi H (2000) Functional polymer microspheres. Prog Polym Sci 25(8):1171–1210. https://doi.org/10.1016/S0079-6700(00)00024-1

    Article  CAS  Google Scholar 

  2. Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interf Sci 85(1):1–33. https://doi.org/10.1016/S0001-8686(99)00023-8

    Article  CAS  Google Scholar 

  3. Pelton RH, Chibante P (1986) Preparation of aqueous latexes with N-isopropylacrylamide. Colloids Surf A Physicochem Eng Asp 20(3):247–256. https://doi.org/10.1016/0166-6622(86)80274-8

    Article  CAS  Google Scholar 

  4. Pichot C, Taniguchi T, Delair T, Elaissari A (2003) Functionalized thermosensitive latex particles: useful tools for diagnostics. J Dispers Sci Technol 24(3 & 4):423–437. https://doi.org/10.1081/DIS-120021799

    Article  CAS  Google Scholar 

  5. Zhang H, Mardyani S, Chan WCW, Kumacheva E (2006) Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics. Biomacromolecules 7(5):1568–1572. https://doi.org/10.1021/bm050912z

    Article  CAS  PubMed  Google Scholar 

  6. Hoare T, Pelton R (2006) Titrametric characterization of pH-induced phase transitions in functionalized microgels. Langmuir 22(17):7342–7350. https://doi.org/10.1021/la0608718

    Article  CAS  PubMed  Google Scholar 

  7. Hoare T, Pelton R (2007) Engineering glucose swelling responses in poly(N-isopropylacrylamide)-based microgels. Macromolecules 40(3):670–678. https://doi.org/10.1021/ma062254w

    Article  CAS  Google Scholar 

  8. Campbell SB, Hoare T (2014) Externally addressable hydrogel nanocomposites for biomedical applications. Curr Opin Chem Eng 4:1–10. https://doi.org/10.1016/j.coche.2013.12.003

    Article  Google Scholar 

  9. Hoare T, Pelton R (2004) Highly pH and temperature responsive microgels functionalized with vinylacetic acid. Macromolecules 37(7):2544–2550. https://doi.org/10.1021/ma035658m

    Article  CAS  Google Scholar 

  10. Smeets NMB, Hoare T (2013) Designing responsive microgels for drug delivery applications. J Polym Sci A Polym Chem 51(14):3027–3043. https://doi.org/10.1002/pola.26707

    Article  CAS  Google Scholar 

  11. Nayak S, Lee H, Chmielewski J, Lyon LA (2004) Folate-mediated cell targeting and cytotoxicity using thermoresponsive microgels. J Am Chem Soc 126(33):10258–10259. https://doi.org/10.1021/ja0474143

    Article  CAS  PubMed  Google Scholar 

  12. Kim J, Singh N, Lyon LA (2006) Label-free biosensing with hydrogel microlenses. Angew Chem Int Ed 45(9):1446–1449. https://doi.org/10.1002/anie.200503102

    Article  CAS  Google Scholar 

  13. Nolan CM, Serpe MJ, Lyon LA (2004) Thermally modulated insulin release from microgel thin films. Biomacromolecules 5(5):1940–1946. https://doi.org/10.1021/bm049750h

    Article  CAS  PubMed  Google Scholar 

  14. Serpe MJ, Yarmey KA, Nolan CM, Lyon LA (2005) Doxorubicin uptake and release from microgel thin films. Biomacromolecules 6(1):408–413. https://doi.org/10.1021/bm049455x.

    Article  CAS  PubMed  Google Scholar 

  15. Smith MH, Lyon LA (2012) Multifunctional nanogels for siRNA delivery. Acc Chem Res 45(7):985–993. https://doi.org/10.1021/ar200216f

    Article  CAS  PubMed  Google Scholar 

  16. Pelton RH, Pelton HM, Morphesis A, Rowell RL (1989) Particle sizes and electrophoretic mobilities of poly(N-isopropylacrylamide) latex. Langmuir 5(3):816–818. https://doi.org/10.1021/la00087a040

    Article  CAS  Google Scholar 

  17. O'Reilly RK, Joralemon MJ, Hawker CJ, Wooley KL (2006) Facile syntheses of surface-functionalized micelles and shell cross-linked nanoparticles. J Polym Sci, Part A: Polym Chem 44(17):5203–5217. https://doi.org/10.1002/pola.21602

    Article  CAS  Google Scholar 

  18. Slater M, Snauko M, Svec F, Frechet JMJ (2006) “Click chemistry” in the preparation of porous polymer-based particulate stationary phases for μ-HPLC separation of peptides and proteins. Anal Chem 78(14):4969–4975. https://doi.org/10.1021/ac060006s

    Article  CAS  PubMed  Google Scholar 

  19. Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54(1):135–147. https://doi.org/10.1016/S0169-409X(01)00245-9

    Article  CAS  PubMed  Google Scholar 

  20. Saunders BR, Crowther HM, Vincent B (1997) Poly[(methyl methacrylate)-co-(methacrylic acid)] microgel particles: swelling control using pH, cononsolvency, and osmotic deswelling. Macromolecules 30(3):482–487. https://doi.org/10.1021/MA961277F

    Article  CAS  Google Scholar 

  21. Islam MR, Serpe MJ (2013) Penetration of polyelectrolytes into charged poly(N-isopropylacrylamide) microgel layers confined between two surfaces. Macromolecules (Washington, DC, U S) 46(4):1599–1606. https://doi.org/10.1021/ma302637n

    Article  CAS  Google Scholar 

  22. Hoare T, Pelton R (2004) Functional group distributions in carboxylic acid containing poly(N-isopropylacrylamide) microgels. Langmuir 20(6):2123–2133. https://doi.org/10.1021/la0351562

    Article  CAS  PubMed  Google Scholar 

  23. Gao J, Frisken BJ (2003) Cross-linker-free N-isopropylacrylamide gel nanospheres. Langmuir 19(13):5212–5216. https://doi.org/10.1021/la0269762

    Article  CAS  Google Scholar 

  24. Gao J, Frisken BJ (2003) Influence of reaction conditions on the synthesis of self-cross-linked N-isopropylacrylamide microgels. Langmuir 19(13):5217–5222. https://doi.org/10.1021/la034207s

    Article  CAS  Google Scholar 

  25. Brown AC, Stabenfeldt SE, Ahn B, Hannan RT, Dhada KS, Herman ES, Stefanelli V, Guzzetta N, Alexeev A, Lam WA, Lyon LA, Barker TH (2014) Ultrasoft microgels displaying emergent platelet-like behaviours. Nat Mater 13(12):1108–1114. https://doi.org/10.1038/nmat4066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sproul EP, Nandi S, Roosa C, Schreck L, Brown AC (2018) Biomimetic microgels with controllable deformability improve healing outcomes. Adv Biosyst 2(10):1800042. https://doi.org/10.1002/adbi.201800042

    Article  CAS  Google Scholar 

  27. Bachman H, Brown AC, Clarke KC, Dhada KS, Douglas A, Hansen CE, Herman E, Hyatt JS, Kodlekere P, Meng Z, Saxena S, Spears Jr MW, Welsch N, Lyon LA (2015) Ultrasoft, highly deformable microgels. Soft Matter 11(10):2018–2028. https://doi.org/10.1039/C5SM00047E

    Article  CAS  PubMed  Google Scholar 

  28. Gaulding JC, Spears MW, Lyon LA (2013) Plastic deformation, wrinkling, and recovery in microgel multilayers. Polym Chem 4(18):4890–4896. https://doi.org/10.1039/C3PY00173C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Welsch N, Lyon LA (2017) Oligo(ethylene glycol)-sidechain microgels prepared in absence of cross-linking agent: polymerization, characterization and variation of particle deformability. PLoS One 12(7):e0181369/1–e0181369/23. https://doi.org/10.1371/journal.pone.0181369

    Article  CAS  Google Scholar 

  30. South AB, Whitmire RE, García AJ, Lyon LA (2009) Centrifugal deposition of microgels for the rapid assembly of nonfouling thin films. ACS Appl Mater Interfaces 1(12):2747–2754. https://doi.org/10.1021/am9005435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Daly E, Saunders BR (2000) Temperature-dependent electrophoretic mobility and hydrodynamic radius measurements of poly(N-isopropylacrylamide) microgel particles: structural insights. Phys Chem Chem Phys 2(14):3187–3193. https://doi.org/10.1039/b002678f

    Article  CAS  Google Scholar 

  32. Hoare T, Pelton R (2005) Electrophoresis of functionalized microgels: morphological insights. Polymer 46(4):1139–1150. https://doi.org/10.1016/j.polymer.2004.11.055

    Article  CAS  Google Scholar 

  33. Chi W, Shuiqin Z, Au-yeung SCF, Suhong J (1996) Volume phase transition of spherical microgel particles. Die Angewandte Makromolekulare Chemie 240(1):123–136. https://doi.org/10.1002/apmc.1996.052400111

    Article  Google Scholar 

  34. Saunders BR (2004) On the structure of poly(N-isopropylacrylamide) microgel particles. Langmuir 20(10):3925–3932. https://doi.org/10.1021/la036390v

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Financial support from the National Institute of Health (R01HL130918) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Andrew Lyon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.R., Tumbarello, M. & Lyon, L.A. Deswelling induced morphological changes in dual pH- and temperature-responsive ultra-low cross-linked poly(N-isopropyl acrylamide)-co-acrylic acid microgels. Colloid Polym Sci 297, 667–676 (2019). https://doi.org/10.1007/s00396-019-04492-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04492-8

Keywords

Navigation