Skip to main content

Advertisement

Log in

Vertically aligned polyaniline nanowire arrays for lithium-ion battery

  • Short Communication
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Polyaniline (PANI) nanowire arrays have been prepared for the first time using Na5V12O32 nanowires as a sacrificial template. Fourier-transformed infrared spectroscopy and energy-dispersive X-ray spectroscopy were used to characterize the as-prepared PANI nanowire arrays. Further, the electrochemical properties of the PANI nanowire arrays for lithium-ion batteries were investigated with cyclic voltammetry, galvanostatic charge-discharge experiment, and rate performance. It delivered a high discharge capacity of 119.79 mA h g−1 after 100 cycles between 2.0 and 4.0 V at 30 mA g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Aziz S, Zhao J, Cain C, Wang Y (2014) Nanoarchitectured LiMn2O4/graphene/ZnO composites as electrodes for Lithium ion batteries. J Mater Sci Technol 30:427–433

    Article  CAS  Google Scholar 

  2. Koul S, Chandra R, Dhawan SK (2000) Conducting polyaniline composite for ESD and EMI at 101 GHz. Polymer 41:9305–9310

    Article  CAS  Google Scholar 

  3. Zhang F, Cao HQ, Yue D, Zhang JX, Qu (2012) Enhanced anode performances of polyaniline-TiO2-reduced graphene oxide nanocomposites for Lithium ion batteries. Inorg Chem 51:9544–9551

    Article  CAS  PubMed  Google Scholar 

  4. Jeyaprabha C, Sathiyanarayanan S, Venkatachari G (2006) Polyaniline as corrosion inhibitor for iron in acid solutions. J Appl Polym Sci 101:2144–2153

    Article  CAS  Google Scholar 

  5. Shao L, Jeon JW, Lutkenhaus JL (2012) Polyaniline/vanadium pentoxide layer-by-layer electrodes for energy storage. Chem Mater 24:181–189

    Article  CAS  Google Scholar 

  6. Wang H, Lin J, Shen ZX (2016) Polyaniline (PANi) based electrode materials for energy storage and conversion. J Sci Adv Mater Dev 1:225–255

    Google Scholar 

  7. Amine K, Belharouak I, Chen Z, Tran T, Yumoto H, Ota N, Myung ST, Sun YK (2010) Nanostructured anode material for high-power battery system in electric vehicles. Adv Mater 22:3052–3057

    Article  CAS  PubMed  Google Scholar 

  8. Mai L, Xu X, Han C, Luo Y, Xu L, Wu YA, Zhao Y (2011) Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowire arrays arrays with enhanced electrochemical property. Nano Lett 11:4992–4996

    Article  CAS  PubMed  Google Scholar 

  9. Wang K, Huang Y, Wang D, Zhao Y, Wang M, Chen X, Qin X, Li S (2015) Preparation and application of hollow ZnFe2O4@PANI hybrids as high performance anode materials for lithium-ion batteries. RSC Adv 5:107247–107253

    Article  CAS  Google Scholar 

  10. Islam S, Lakshmi GBVS, Siddiqui AM, Husain M, Zulfequar M (2013) Synthesis, electrical conductivity, and dielectric behavior of polyaniline/V2O5 composites. Int J Polym Sci 2013:8062–8070

    Article  CAS  Google Scholar 

  11. Meng CZ, Liu CH, Chen LZ, Hu CH, Fan SS (2010) Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett 10:4025–4031

    Article  CAS  PubMed  Google Scholar 

  12. Jeong JM, Choi BG, Lee SC, Lee KG, Chang SJ, Han YK, Lee YB, Lee HU, Kwon S, Lee G, Lee CS, Huh YS (2013) Hierarchical hollow spheres of Fe2O3@polyaniline for lithium ion battery anodes. Adv Mater 25:6250–6255

    Article  CAS  PubMed  Google Scholar 

  13. Ding H, Jiang H, Zhu Z, Hu Y, Gu F, Li C (2015) Ternary SnO2@PANI/rGO nanohybrids as excellent anode materials for lithium-ion batteries. Electrochim Acta 157:205–210

    Article  CAS  Google Scholar 

  14. MacDiarmid AG, Chiang JC, Halpern M (1984) Aqueous chemistry and electrochemistry of polyacetylene and ‘polyaniline’: application to rechargeable batteries. Polym Prepr 121:906

    Google Scholar 

  15. Goto F, Abe K, Okabayashi K, Yoshida T, Morimoto H (1987) The polyaniline/lithium battery. J Power Sources 20:243–248

    Article  CAS  Google Scholar 

  16. Mike JF, Lutkenhaus JL (2013) Electrochemically active polymers for electrochemical energy storage: opportunities and challenges. ACS Macro Lett 2:839–844

    Article  CAS  Google Scholar 

  17. Jung WH, Lee YM, Jo NJ, Lee JO (2008) Control of polyaniline particle shapes. Macromol Chem Phys 209:1083–1093

    Article  CAS  Google Scholar 

  18. Hui Y, Cao L, Xu Z (2017) In situ synthesis of core-shell Li4Ti5O12 @ polyaniline composites with enhanced rate performance for lithium-ion battery anodes. J Mater Sci Technol 3:231–238

    Article  Google Scholar 

  19. Li J, Jia Q, Zhu J, Zheng M (2008) Interfacial polymerization of morphologically modified polyaniline: from hollow microspheres to nanowires. Polym Int 57:337–341

    Article  CAS  Google Scholar 

  20. Du XS, Zhou CF, Wang GT, Mai YW (2008) Novel solid-state and template-free synthesis of branched polyaniline nanofibers. Chem Mater 20:3806–3808

    Article  CAS  Google Scholar 

  21. Cao Y, Fang D, Wang C (2015) Novel aligned sodium vanadate nanowire arrays for high-performance lithium-ion batteries electrode. RSC Adv 5:42955–42960

    Article  CAS  Google Scholar 

  22. Qi M, Xie D, Zhong Y (2017) Smart construction of polyaniline shell on cobalt oxides as integrated core-shell arrays for enhanced lithium ion batteries. Electrochim Acta 247:701–707

    Article  CAS  Google Scholar 

  23. Iqbal S, Bahadur A, Saeed A (2017) Electrochemical performance of 2D polyaniline anchored CuS/graphene nano-active composite as anode material for lithium-ion battery. J Colloid Interface Sci 502:16–23

    Article  CAS  PubMed  Google Scholar 

  24. Zhang J, Wang J, Yang J (2014) Three-dimensional macroporous graphene foam filled with mesoporous polyaniline network for high areal capacitance. ACS Sustain Chem Eng 2:2291–2296

    Article  CAS  Google Scholar 

  25. Ryu KS, Jeong SK, Joo J (2007) Polyaniline doped with dimethyl sulfate as a nucleophilic dopant and its electrochemical properties as an electrode in a lithium secondary battery and a redox supercapacitor. J Phys Chem B 111:731–739

    Article  CAS  PubMed  Google Scholar 

  26. He BL, Dong B, Wang W (2009) Performance of polyaniline/multi-walled carbon nanotubes composites as cathode for rechargeable lithium batteries. Mater Chem Phys 114:371–375

    Article  CAS  Google Scholar 

  27. Wang S, Lu S, Li X (2013) Study of H2SO4 concentration on properties of H2SO4 doped polyaniline counter electrodes for dye-sensitized solar cells. J Power Sources 242:438–446

    Article  CAS  Google Scholar 

  28. Jossen A (2006) Fundamentals of battery dynamics. J Power Sources 154:530–538

    Article  CAS  Google Scholar 

  29. Cheng F, Tang W, Li C (2006) Conducting poly(aniline) nanotubes and nanofibers: controlled synthesis and application in lithium/poly(aniline) rechargeable batteries. Chem 12:3082–3088

    Article  CAS  Google Scholar 

  30. Wei Q, Pan A, Chen D, Mai L, Chen S, Zhao Y, Hercule K, Xu L, Minhas-Khan A, Zhang Q (2014) One-pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries. Nano Lett 14:1042–1048

    Article  CAS  PubMed  Google Scholar 

  31. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures., synthesis, characterization, and applications. Adv Mater 15:353–389

    Article  CAS  Google Scholar 

  32. Tian B, Zheng X, Kempa T, Fang Y, Yu N, Yu G, Huang J, Lieber C (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–889

    Article  CAS  PubMed  Google Scholar 

  33. Xu S, Qin Y, Xu C, Wei Y, Yang R, Wang Z (2010) Self-powered nanowire devices. Nat Nanotechnol 5:366–373

    Article  CAS  PubMed  Google Scholar 

  34. Yan H, Choe H, Nam S, Hu Y, Das S, Klemic J, Ellenbogen J, Lieber C (2011) Programmable nanowire circuits for nanoprocessors. Nature 470:240–244

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51201117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 730 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wu, Y., Hua, K. et al. Vertically aligned polyaniline nanowire arrays for lithium-ion battery. Colloid Polym Sci 296, 1395–1400 (2018). https://doi.org/10.1007/s00396-018-4351-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4351-6

Keywords

Navigation