Skip to main content
Log in

Efficient removal of Co(II), Ni(II), and Zn(II) metal ions from binary and ternary solutions using a pH responsive bifunctional graft copolymer

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A novel, pH responsive graft copolymer hydroxyethyl cellulose-graft-poly(N-vinyl imidazole-co-acrylic acid) containing both acidic and basic functionalities was prepared in water medium by using potassium peroxydisulfate as an initiator. Several techniques like FTIR, XRD, NMR, SEM and TGA/DTGA studies were used to characterize the synthesized copolymer. The polymer was used for the adsorption of toxic heavy metal ions namely Co(II), Ni(II) and Zn(II) from the ternary mixture of three metal ion’s solution in aqueous medium. The graft copolymer showed an excellent pH dependence for the adsorption of aforementioned three metal ions. Ni(II) and Co(II) showed maximum adsorption efficiency at pH 5.5, whereas for Zn(II), it was at 6.5. Metal complexation studies by the synthesized graft copolymer were carried out experimentally by using conductometric titration and theoretically by Density Functional Theory (DFT) using Gaussian 09 software. Metal complexation studies showed that at low pH (≤ 5.5), it is the carboxylic acid group, and at pH > 5.5, it is only the carboxylic acid and imidazole functionalities that both are responsible for the adsorption. Adsorption dynamics, isotherms, kinetics and thermodynamics were studied for all the three metal ions’ adsorption onto the polymer surface. The adsorption follows Langmuir isotherm model and pseudo-second-order kinetics for all the metal ions. Maximum adsorption capacity was found to be 165, 122 and 68 mg/g for Ni(II), Co(II) and Zn(II) metal ion, respectively. Thermodynamic study showed that the adsorption process was endothermic and spontaneous in nature. The preferential metal adsorption by the graft copolymer was followed in the order Ni(II) > Co(II) > Zn(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akhtar N, Iqbal J, Iqbal M (2004) Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. J Hazard Mater 108:85–94

    Article  CAS  PubMed  Google Scholar 

  2. Farooq U, Kozinski JA, Khan MA, Athar M (2010) Biosorption of heavy metal ions using wheat based biosorbents—a review of the recent literature. Bioresour Technol 101:5043–5053

    Article  CAS  PubMed  Google Scholar 

  3. Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479

    Article  CAS  Google Scholar 

  4. Netzer A, Hughes DE (1984) Adsorption of copper, lead and cobalt by activated carbon. Water Res 18:927–933

    Article  CAS  Google Scholar 

  5. Gomez-Lahoz C, Garcia-Herruzo F, Rodriguez-Maroto JM, Rodriguez JJ (1993) Cobalt (II) removal from water by chemical reduction with sodium borohydride. Water Res 27:985–992

    Article  CAS  Google Scholar 

  6. Zoumis T, Calmano W, Förstner U (2000) Demobilization of heavy metals from mine waters. CLEAN Soil Air Water 28:212–218

    CAS  Google Scholar 

  7. Dimirkou A (2007) Uptake of Zn2+ ions by a fully iron-exchanged clinoptilolite. Case study of heavily contaminated drinking water samples. Water Res 41:2763–2773

    Article  CAS  PubMed  Google Scholar 

  8. Kurniawan TA, Chan GY, Lo WH, Babel S (2006) Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Sci Total Environ 366:409–426

    Article  CAS  PubMed  Google Scholar 

  9. Kurniawan TA, Chan GY, Lo WH, Babel S (2006) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98

    Article  CAS  Google Scholar 

  10. Arief VO, Trilestari K, Sunarso J, Indraswati N, Ismadji S (2008) Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. CLEAN Soil Air Water 36:937–962

    Article  CAS  Google Scholar 

  11. Naeem A, Saddique MT, Mustafa S, Tasleem S, Shah KH, Waseem M (2009) Removal of Co2+ ions from aqueous solution by cation exchange sorption onto NiO. J Hazard Mater 172:124–128

    Article  CAS  PubMed  Google Scholar 

  12. El Samrani AG, Lartiges BS, Villiéras F (2008) Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization. Water Res 42:951–960

    Article  CAS  PubMed  Google Scholar 

  13. Mohsen-Nia M, Montazeri P, Modarress H (2007) Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination 217:276–281

    Article  CAS  Google Scholar 

  14. Verma VK, Tewari S, Rai JPN (2008) Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes. Bioresour Technol 99:1932–1938

    Article  CAS  PubMed  Google Scholar 

  15. Mauchauffée S, Meux E (2007) Use of sodium decanoate for selective precipitation of metals contained in industrial wastewater. Chemosphere 69:763–768

    Article  CAS  PubMed  Google Scholar 

  16. Kozlowski CA, Walkowiak W (2002) Removal of chromium (VI) from aqueous solutions by polymer inclusion membranes. Water Res 36:4870–4876

    Article  CAS  PubMed  Google Scholar 

  17. Vreysen S, Maes A, Wullaert H (2008) Removal of organotin compounds, Cu and Zn from shipyard wastewaters by adsorption-flocculation: a technical and economical analysis. Mar Pollut Bull 56:106–115

    Article  CAS  PubMed  Google Scholar 

  18. Meena AK, Mishra GK, Rai PK, Rajagopal C, Nagar PN (2005) Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J Hazard Mater 122:161–170

    Article  CAS  PubMed  Google Scholar 

  19. Kadirvelu K, Thamaraiselvi K, Namasivayam C (2001) Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour Technol 76:63–65

    Article  CAS  PubMed  Google Scholar 

  20. Smičiklas I, Dimović S, Plećaš I, Mitrić M (2006) Removal of Co2+ from aqueous solutions by hydroxyapatite. Water Res 40:2267–2274

    Article  CAS  PubMed  Google Scholar 

  21. Parab H, Joshi S, Shenoy N, Lali A, Sarma US, Sudersanan M (2006) Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith. Process Biochem 41:609–615

    Article  CAS  Google Scholar 

  22. Shibi IG, Anirudhan TS (2005) Adsorption of Co(II) by a carboxylate-functionalized polyacrylamide grafted lignocellulosics. Chemosphere 58:1117–1126

    Article  CAS  PubMed  Google Scholar 

  23. He M, Zhu Y, Yang Y, Han B, Zhang Y (2011) Adsorption of cobalt(II) ions from aqueous solutions by palygorskite. Appl Clay Sci 54:292–296

    Article  CAS  Google Scholar 

  24. Kang SY, Lee JU, Moon SH, Kim KW (2004) Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater. Chemosphere 56:141–147

    Article  CAS  PubMed  Google Scholar 

  25. Mohan D, Singh KP (2002) Single-and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agricultural waste. Water Res 36:2304–2318

    Article  CAS  PubMed  Google Scholar 

  26. Tunali S, Akar T (2006) Zn(II) biosorption properties of Botrytis cinerea biomass. J Hazard Mater 131:137–145

    Article  CAS  PubMed  Google Scholar 

  27. Rahman ML, Sarkar SM, Yusoff MM, Abdullah MH (2016) Efficient removal of transition metal ions using poly (amidoxime) ligand from polymer grafted kenaf cellulose. RSC Adv 6:745–757

    Article  CAS  Google Scholar 

  28. Sitko R, Turek E, Zawisza B, Malicka E, Talik E, Heimann J, Gagor A, Feist B, Wrzalik R (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 42:5682–5689

    Article  CAS  PubMed  Google Scholar 

  29. Srivastava V, Weng CH, Singh VK, Sharma YC (2011) Adsorption of nickel ions from aqueous solutions by nano alumina: kinetic, mass transfer, and equilibrium studies. J Chem Eng Data 56:1414–1422

    Article  CAS  Google Scholar 

  30. Kong W, Li Q, Liu J, Li X, Zhao L, Su Y, Yue Q, Gao B (2016) Adsorption behavior and mechanism of heavy metal ions by chicken feather protein-based semi-interpenetrating polymer networks super absorbent resin. RSC Adv 6:83234–83243

    Article  CAS  Google Scholar 

  31. Cui J, Li Y, Meng J, Zhong C, Wang P (2017) Synthesis of chelating polyamine fibers and their adsorption properties for nickel(II) ions from aqueous solution. RSC Adv 7:40392–40400

    Article  CAS  Google Scholar 

  32. Lasheen MR, El-Sherif IY, Tawfik ME, El-Wakeel ST, El-Shahat MF (2016) Preparation and adsorption properties of nano magnetite chitosan films for heavy metal ions from aqueous solution. Mater Res Bull 80:344–350

    Article  CAS  Google Scholar 

  33. Brostow W, Lobland HEH (2017) Materials: introduction and applications. Wiley, New York

    Google Scholar 

  34. Singh RP, Nayak BR, Biswal DR, Tripathy T, Banik K (2003) Biobased polymeric flocculants for industrial effluent treatment. Mater Res Innov 7:331–340

    Article  CAS  Google Scholar 

  35. Kolya H, Das S, Tripathy T (2014) Synthesis of starch-g-poly-(N-methylacrylamide-co-acrylic acid) and its application for the removal of mercury(II) from aqueous solution by adsorption. Eur Polym J 58:1–10

    Article  CAS  Google Scholar 

  36. Jia YF, Xiao B, Thomas KM (2002) Adsorption of metal ions on nitrogen surface functional groups in activated carbons. Langmuir 18:470–478

    Article  CAS  Google Scholar 

  37. Finar IL (1973) Organic chemistry: vol. 1. The Fundamental Principles. ELBS/Longman, London, p 235

    Google Scholar 

  38. Zhang Q, Dan S, Du K (2017) Fabrication and characterization of magnetic hydroxyapatite entrapped agarose composite beads with high adsorption capacity for heavy metal removal. Ind Eng Chem Res 56:8705–8712

    Article  CAS  Google Scholar 

  39. Song Z, Li W, Liu W, Yang Y, Wang N, Wang H, Gao H (2015) Novel magnetic lignin composite sorbent for chromium(VI) adsorption. RSC Adv 5:13028–13035

    Article  CAS  Google Scholar 

  40. Diao Y, Song M, Zhang Y, Shi LY, Lv Y, Ran R (2017) Enzymic degradation of hydroxyethyl cellulose and analysis of the substitution pattern along the polysaccharide chain. Carbohydr Polym 169:92–100

    Article  CAS  PubMed  Google Scholar 

  41. Caner H, Yilmaz E, Yilmaz O (2007) Synthesis, characterization and antibacterial activity of poly (N-vinylimidazole) grafted chitosan. Carbohydr Polym 69:318–325

    Article  CAS  Google Scholar 

  42. Rivas BL, Pooley SA, Soto M, Maturana HA, Geckeler KE (1998) Poly (N, N′-dimethylacrylamide-co-acrylic acid): synthesis, characterization, and application for the removal and separation of inorganic ions in aqueous solution. J Appl Polym Sci 67:93–100

    Article  CAS  Google Scholar 

  43. Shobhana E (2012) X-ray diffraction and UV-visible studies of PMMA thin films. Intl J Mod 2:1092–1095

  44. Talu M, Demiroğlu EU, Yurdakul Ş, Badoğlu S (2015) FTIR, Raman and NMR spectroscopic and DFT theoretical studies on poly (N-vinylimidazole). Spectrochim Acta A 134:267–275

    Article  CAS  Google Scholar 

  45. Fodor C, Bozi J, Blazsó M, Iván B (2012) Thermal behavior, stability, and decomposition mechanism of poly (N-vinylimidazole). Macromolecules 45:8953–8960

    Article  CAS  Google Scholar 

  46. Kolya H, Tripathy T (2015) Metal complexation studies of amylopectin-graft-poly [(N, N-dimethylacrylamide)-co-(acrylic acid)]: a biodegradable synthetic graft copolymer. Polym Int 64:1336–1351

    Article  CAS  Google Scholar 

  47. Faur-Brasquet C, Reddad Z, Kadirvelu K, Le Cloirec P (2002) Modeling the adsorption of metal ions (Cu2+, Ni2+, Pb2+) onto ACCs using surface complexation models. Appl Surf Sci 196:356–365

    Article  CAS  Google Scholar 

  48. Chattoraj DK, Imae T, Mitra A (2004) A generalized scale of free energy of excess adsorption of solute and absolute composition of the interfacial phase. Langmuir 20:4903–4915

    Article  CAS  PubMed  Google Scholar 

  49. Malamis S, Katsou E (2013) A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: examination of process parameters, kinetics and isotherms. J Hazard Mater 252:428–461

    Article  CAS  PubMed  Google Scholar 

  50. Rivas BL, Schiappacasse LN, Pereira UE, Moreno-Villoslada I (2004) Interactions of polyelectrolytes bearing carboxylate and/or sulfonate groups with Cu(II) and Ni(II). Polymer 45:1771–1775

    Article  CAS  Google Scholar 

  51. Chen YX, Zhong BH, Fang WM (2012) Adsorption characterization of lead(II) and cadmium(II) on crosslinked carboxymethyl starch. J Appl Polym Sci 124:5010–5020

    CAS  Google Scholar 

  52. Yuh-Shan H (2004) Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59:171–177

    Article  Google Scholar 

  53. Ho YS (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689

    Article  CAS  PubMed  Google Scholar 

  54. Weber MJ, Morris J (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–60

    Google Scholar 

  55. Li K, Li Y, Zheng Z (2010) Kinetics and mechanism studies of p-nitroaniline adsorption on activated carbon fibers prepared from cotton stalk by NH4H2PO4 activation and subsequent gasification with steam. J Hazard Mater 178:553–559

    Article  CAS  PubMed  Google Scholar 

  56. Freundlich H (1906) Über die Adsorption in Lösungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  57. Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465

    Article  CAS  PubMed  Google Scholar 

  58. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  59. Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam 5:212–223

    Article  CAS  Google Scholar 

  60. Celebi O, Üzüm Ç, Shahwan T, Erten HN (2007) A radiotracer study of the adsorption behavior of aqueous Ba2+ ions on nanoparticles of zero-valent iron. J Hazard Mater 148:761–767

    Article  CAS  PubMed  Google Scholar 

  61. Ghorai S, Sarkar AK, Panda AB, Pal S (2013) Effective removal of Congo red dye from aqueous solution using modified xanthan gum/silica hybrid nanocomposite as adsorbent. Bioresour Technol 144:485–491

    Article  CAS  PubMed  Google Scholar 

  62. Huang L, Xiao C, Chen B (2011) A novel starch-based adsorbent for removing toxic Hg(II) and Pb(II) ions from aqueous solution. J Hazard Mater 192:832–836

    Article  CAS  PubMed  Google Scholar 

  63. Liu H, Wang C, Liu J, Wang B, Sun H (2013) Competitive adsorption of Cd(II), Zn(II) and Ni(II) from their binary and ternary acidic systems using tourmaline. J Environ Manag 128:727–734

    Article  CAS  Google Scholar 

  64. Mohan D, Pittman CU, Steele PH (2006) Single, binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin-a biosorbent. J Colloid Interface Sci 297:489–504

    Article  CAS  PubMed  Google Scholar 

  65. Nightingale Jr ER (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. J Phys Chem 63:1381–1387

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge West Bengal Department of Science and Technology [Contract Grant Number 868 (Sanc.)/ST/P/S & T/15G-9/2015]. J.R. acknowledges UGC, New Delhi, India, for JRF [Ref. No. 19/06/2016(i)EU-V]. We also thank the Department of Chemistry, PG Division, Midnapore College (Autonomous), for instrumental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tridib Tripathy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1393 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, J., Jana, S., Bhanja, S.K. et al. Efficient removal of Co(II), Ni(II), and Zn(II) metal ions from binary and ternary solutions using a pH responsive bifunctional graft copolymer. Colloid Polym Sci 296, 1275–1291 (2018). https://doi.org/10.1007/s00396-018-4345-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4345-4

Keywords

Navigation