Skip to main content
Log in

Truncated and spheroidal Ag nanoparticles: a matter of size transformation

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The ordered arrays of anisotropic mesostructure metal nanoparticle (diameter size in the range of 15 to 200 nm) characteristics are indeed influenced by the combined effect of packing constraints and inter-particle interactions, that is, the two morphological factors that strongly influence the creation of the particles’ shape. In this work, we studied on how the degree of truncation of Ag nanoparticles authorised the mesostructured morphologies and particle orientation preferences within the mesosparticle arrays. The Ag represented the best and most versatile candidate and known for its highest electrical conductivities among other transition metals in periodic table. The interest is motivated by the need to understand the inevitable morphological transformation from mesoscopic to microscopic states evolve within the scope of progressive aggregation of atomic constituents of Ag system. The grazing information obtained from HR-TEM shows that Ag mesosparticles of highly truncated flake are assembled in fcc-type mesostructure, similar to the arrays formed by microscopic quasi-spherical structure, but with significantly reduced packing density and different growth orientations. The detailed information on the size and microstructure transformation have been gathered by fast Fourier transform (FFT) of HR-TEM images, allowing us to figure out the role of Ag defects that anchored the variation in crystallite growth of different mean diameter size particles. The influences on the details of the nanostructures have to be deeply understood to promote practical applications for such outstanding Ag material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ricci M, Platania E, Lofrumento C, Castellucci EM, Becucci M (2016) Resonance Raman spectra of O-Safranin dye, free and adsorbed on silver nanoparticles: experiment and density functional theory calculation. J Phys Chem A 120(27):5307–5314. https://doi.org/10.1021/acs.jpca.6b01597

    Article  CAS  Google Scholar 

  2. Kassab LPR, Ferreira Freitas L, Ozga K, Brik MG, Wojciechowski A (2010) ZnO–TeO2–Yb/Tm glasses with silver nanoparticles as laser operated quantum electronic devices. Opt Laser Technol 42(8):1340–1343. https://doi.org/10.1016/j.optlastec.2010.04.016

    Article  CAS  Google Scholar 

  3. Yang H, Wang Y, Chen X, Zhao X, Gu L, Huang H, Yan J, Xu C, Li G, Wu J, Edwards AJ, Dittrich B, Tang Z, Wang D, Lehtovaara L, Häkkinen H, Zheng N (2016) Plasmonic twinned silver nanoparticles with molecular precision. Nat Commun 7:12809. https://doi.org/10.1038/ncomms12809

    Article  CAS  Google Scholar 

  4. Pietro PD, Strano G, Zuccarello L, Satriano C (2016) Gold and silver nanoparticles for applications in theranostics. Curr Top Med Chem 16(27):3069–3102. https://doi.org/10.2174/1568026616666160715163346

    Article  Google Scholar 

  5. Reddy PR, Ganesh SD, Saha N, Zandraa O, Saha P (2016) Ecofriendly synthesis of silver nanoparticles from Garden Rhubarb (Rheum rhabarbarum). J Nanotechnol 2016:9

    Article  Google Scholar 

  6. Kästner C, Thünemann AF (2016) Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity. Langmuir 32(29):7383–7391. https://doi.org/10.1021/acs.langmuir.6b01477

    Article  Google Scholar 

  7. Singho ND, Lah NAC, Johan MR, Ahmad R (2012) FTIR studies on silver-poly (methylmethacrylate) nanocomposites via in-situ polymerization technique. Int J Electrochem Sci 7:5596

    CAS  Google Scholar 

  8. Singho ND, Johan MR, Lah NAC (2014) Temperature-dependent properties of silver-poly (methylmethacrylate) nanocomposites synthesized by in-situ technique. Nanoscale Res Lett 9(1):42. https://doi.org/10.1186/1556-276X-9-42

    Article  Google Scholar 

  9. Singho ND, Lah NAC, Johan MR, Ahmad R (2012) Enhancement of the refractive index of silver nanoparticles in poly (methyl methacrylate). Int J Res Eng Technol 1:231–234

    Google Scholar 

  10. Riaz Ahmed, K.B., A.M. Nagy, R.P. Brown, Q. Zhang, S.G. Malghan, and P.L. Goering, Silver nanoparticles: significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol in Vitro, 2017. 38: p. 179–192, https://doi.org/10.1016/j.tiv.2016.10.012

  11. Mikiciuk, J., E. Mikiciuk, and A. Szterk, Physico-chemical properties and inhibitory effects of commercial colloidal silver nanoparticles as potential antimicrobial agent in the food industry. Journal of Food Processing and Preservation, 2016: p. n/a-n/a

  12. Burrows ND, Vartanian AM, Abadeer NS, Grzincic EM, Jacob LM, Lin W, Li J, Dennison JM, Hinman JG, Murphy CJ (2016) Anisotropic nanoparticles and anisotropic surface chemistry. J Phys Chem Lett 7(4):632–641. https://doi.org/10.1021/acs.jpclett.5b02205

    Article  CAS  Google Scholar 

  13. Ankamwar B, Kamble V, Sur UK, Santra C (2016) Spectrophotometric evaluation of surface morphology dependent catalytic activity of biosynthesized silver and gold nanoparticles using UV–vis spectra: a comparative kinetic study. Appl Surf Sci 366:275–283. https://doi.org/10.1016/j.apsusc.2016.01.093

    Article  CAS  Google Scholar 

  14. Ferraris S, Miola M, Cochis A, Azzimonti B, Rimondini L, Prenesti E, Vernè E (2017) In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols. Appl Surf Sci 396:461–470. https://doi.org/10.1016/j.apsusc.2016.10.177

    Article  CAS  Google Scholar 

  15. Wu G, Yang S, Liu Q (2015) Synthesis of silver nanostructures by simple redox under electrodeposited copper microcubes and the orient attachment growth of 2D silver. Appl Surf Sci 357(Part A):583–592

    Article  CAS  Google Scholar 

  16. Glotzer SC, Solomon MJ (2007) Anisotropy of building blocks and their assembly into complex structures. Nat Mater 6(7):557–562. https://doi.org/10.1038/nmat1949

    Article  Google Scholar 

  17. Jiang C, Leung CW, Pong PWT (2016) Magnetic-field-assisted assembly of anisotropic superstructures by iron oxide nanoparticles and their enhanced magnetism. Nanoscale Res Lett 11(1):189. https://doi.org/10.1186/s11671-016-1406-9

    Article  Google Scholar 

  18. Lu Y, Li Y, Saka M (2015) Growth of Ag micro/nanoparticles using stress migration from multilayered metallic structure. Appl Surf Sci 351:1011–1015. https://doi.org/10.1016/j.apsusc.2015.06.037

    Article  CAS  Google Scholar 

  19. He X, Zhao X (2009) Solvothermal synthesis and formation mechanism of chain-like triangular silver nanoplate assemblies: application to metal-enhanced fluorescence (MEF). Appl Surf Sci 255(16):7361–7368. https://doi.org/10.1016/j.apsusc.2009.04.002

    Article  CAS  Google Scholar 

  20. Robertson JD, Rizzello L, Avila-Olias M, Gaitzsch J, Contini C, Magoń MS, Renshaw SA, Battaglia G (2016) Purification of nanoparticles by size and shape. Sci Rep 6(1):27494. https://doi.org/10.1038/srep27494

    Article  CAS  Google Scholar 

  21. Zomorodian K, Pourshahid S, Sadatsharifi A, Mehryar P, Pakshir K, Rahimi MJ, Arabi Monfared A (2016) Biosynthesis and characterization of silver nanoparticles by Aspergillus species. Biomed Res Int 2016:6

    Article  Google Scholar 

  22. Anandalakshmi K, Venugobal J, Ramasamy V (2016) Characterization of silver nanoparticles by green synthesis method using Pedalium murex leaf extract and their antibacterial activity. Appl Nanosci 6(3):399–408. https://doi.org/10.1007/s13204-015-0449-z

    Article  CAS  Google Scholar 

  23. Thiwawong T, Onlaor K, Tunhoo B (2013) A humidity sensor based on silver nanoparticles thin film prepared by electrostatic spray deposition process. Adv Mater Sci Eng 2013:7

    Article  Google Scholar 

  24. Rajan K, Roppolo I, Chiappone A, Bocchini S, Perrone D, Chiolerio A (2016) Silver nanoparticle ink technology: state of the art. Nanotechnol Sci Appl 9:1–13. https://doi.org/10.2147/NSA.S68080

    Google Scholar 

  25. Sang J, Aisawa S, Hirahara H, Kudo T, Mori K (2016) Self-reduction and size controlled synthesis of silver nanoparticles on carbon nanospheres by grafting triazine-based molecular layer for conductivity improvement. Appl Surf Sci 364:110–116. https://doi.org/10.1016/j.apsusc.2015.11.233

    Article  CAS  Google Scholar 

  26. Chen L, Wang L, Yu X, Zhang S, Li D, Xu C, Zeng L, Zhou S, Zhao J, Guo F, Hu L, Yang D (2013) Constructing Ag nanoparticles–single wall carbon hybrid nanostructure to improve field emission properties. Appl Surf Sci 265:187–191. https://doi.org/10.1016/j.apsusc.2012.10.164

    Article  CAS  Google Scholar 

  27. Dai S, Zhang X, Li T, Du Z, Dang H (2005) Preparation of silver nanopatterns on DNA templates. Appl Surf Sci 249(1–4):346–353. https://doi.org/10.1016/j.apsusc.2004.12.026

    Article  CAS  Google Scholar 

  28. Lah NAC (2015) Conductivity studies of the size-induced metal-insulator transition (SIMIT) in silver nanoparticles. University of Oxford

  29. Bose S, Chattopadhyay R, Roy S, Bhadra SK (2016) Study of nonlinear dynamics in silver-nanoparticle-doped photonic crystal fiber. J Opt Soc Am B 33(6):1014–1021. https://doi.org/10.1364/JOSAB.33.001014

    Article  CAS  Google Scholar 

  30. Cunningham JC, Kogan MR, Tsai Y-J, Luo L, Richards I, Crooks RM (2016) Paper-based sensor for electrochemical detection of silver nanoparticle labels by galvanic exchange. ACS Sensors 1(1):40–47. https://doi.org/10.1021/acssensors.5b00051

    Article  CAS  Google Scholar 

  31. Wei L, Lu J, Xu H, Patel A, Chen Z-S, Chen G (2015) Silver nanoparticles: synthesis, properties, and therapeutic applications. Drug Discov Today 20(5):595–601. https://doi.org/10.1016/j.drudis.2014.11.014

    Article  CAS  Google Scholar 

  32. Yan T, Guan W, Xiao Y, Tian J, Qiao Z, Zhai H, Li W, You J (2017) Effect of thermal annealing on the microstructures and photocatalytic performance of silver orthophosphate: the synergistic mechanism of Ag vacancies and metallic Ag. Appl Surf Sci 391(Part B):592–600

    Article  CAS  Google Scholar 

  33. Zhang Y, Liu Q, Mundoor H, Yuan Y, Smalyukh II (2015) Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers. ACS Nano 9(3):3097–3108. https://doi.org/10.1021/nn5074644

    Article  CAS  Google Scholar 

  34. Makrygianni M, Kalpyris I, Boutopoulos C, Zergioti I (2014) Laser induced forward transfer of Ag nanoparticles ink deposition and characterization. Appl Surf Sci 297:40–44. https://doi.org/10.1016/j.apsusc.2014.01.069

    Article  CAS  Google Scholar 

  35. Krishna Podagatlapalli G, Hamad S, Ahamad Mohiddon M, Venugopal Rao S (2014) Effect of oblique incidence on silver nanomaterials fabricated in water via ultrafast laser ablation for photonics and explosives detection. Appl Surf Sci 303:217–232. https://doi.org/10.1016/j.apsusc.2014.02.152

    Article  CAS  Google Scholar 

  36. Khodashenas B, Ghorbani HR Synthesis of silver nanoparticles with different shapes. Arab J Chem

  37. Alshareef A, Laird K, Cross RBM Shape-dependent antibacterial activity of silver nanoparticles on Escherichia coli and Enterococcus faecium bacterium. Appl Surf Sci

  38. Ammosova L, Jiang Y, Suvanto M, Pakkanen TA (2017) Precise micropatterning of silver nanoparticles on plastic substrates. Appl Surf Sci 401:353–361. https://doi.org/10.1016/j.apsusc.2017.01.018

    Article  CAS  Google Scholar 

  39. Park J, Kwon SG, Jun SW, Kim BH, Hyeon T (2012) Large-scale synthesis of ultra-small-sized silver nanoparticles. ChemPhysChem 13(10):2540–2543. https://doi.org/10.1002/cphc.201101035

    Article  CAS  Google Scholar 

  40. Lah NAC, Johan MR (2011) Optical and thermodynamic studies of silver nanoparticles stabilized by Daxad 19 surfactant. Int J Mater Res 102(3):340–347. https://doi.org/10.3139/146.110478

    Article  CAS  Google Scholar 

  41. Lah NAC, Johan MR (2011) Facile shape control synthesis and optical properties of silver nanoparticles stabilized by Daxad 19 surfactant. Appl Surf Sci 257(17):7494–7500. https://doi.org/10.1016/j.apsusc.2011.03.067

    Article  CAS  Google Scholar 

  42. Lah NAC, Mahendran S, Johan MR, Othman NS, Saari MW, Fern LB and Kamis NZ (2017) Plasmonic behaviour of phenylenediamine functionalised silver nanoparticles. Materials Research Express 4(9):095018

  43. Lah NAC (2008) Synthesis and characterization studies of silver nanoparticles. Jabatan Kejuruteraan Mekanik, Fakulti Kejuruteraan, Universiti Malaya

  44. Lah NAC, Johan MR (2009) Highly potential properties of Ag nanostructures: controlled synthesis and characterization. In 11th International conference on advanced mater. Brazil

  45. Pauly M, Pichon BP, Albouy P-A, Fleutot S, Leuvrey C, Trassin M, Gallani J-L, Begin-Colin S (2011) Monolayer and multilayer assemblies of spherically and cubic-shaped iron oxide nanoparticles. J Mater Chem 21(40):16018–16027. https://doi.org/10.1039/c1jm12012c

    Article  CAS  Google Scholar 

  46. Kettler K, Krystek P, Giannakou C, Hendriks AJ, de Jong WH (2016) Exploring the effect of silver nanoparticle size and medium composition on uptake into pulmonary epithelial 16HBE14o-cells. J Nanopart Res 18(7):182. https://doi.org/10.1007/s11051-016-3493-z

    Article  Google Scholar 

  47. Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, Hamed MM (2016) Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt J Aquat Res 42(3):301–312. https://doi.org/10.1016/j.ejar.2016.05.004

    Article  Google Scholar 

  48. Barnard AS, Zapol P (2004) A model for the phase stability of arbitrary nanoparticles as a function of size and shape. J Chem Phys 121(9):4276–4283. https://doi.org/10.1063/1.1775770

    Article  CAS  Google Scholar 

  49. Kim MH, Lu X, Wiley B, Lee EP, Xia Y (2008) Morphological evolution of single-crystal Ag nanospheres during the galvanic replacement reaction with HAuCl4. J Phys Chem C 112(21):7872–7876. https://doi.org/10.1021/jp711662f

    Article  CAS  Google Scholar 

  50. Sarma B, Sarma BK (2017) Fabrication of Ag/ZnO heterostructure and the role of surface coverage of ZnO microrods by Ag nanoparticles on the photophysical and photocatalytic properties of the metal-semiconductor system. Appl Surf Sci 410:557–565. https://doi.org/10.1016/j.apsusc.2017.03.154

    Article  CAS  Google Scholar 

  51. Li M, Gong Y, Wang W, Xu G, Liu Y, Guo J (2017) In-situ reduced silver nanoparticles on populus fiber and the catalytic application. Appl Surf Sci 394:351–357. https://doi.org/10.1016/j.apsusc.2016.10.094

    Article  CAS  Google Scholar 

  52. Junejo Y, Güner A, Baykal A (2014) Synthesis and characterization of amoxicillin derived silver nanoparticles: its catalytic effect on degradation of some pharmaceutical antibiotics. Appl Surf Sci 317:914–922. https://doi.org/10.1016/j.apsusc.2014.08.133

    Article  CAS  Google Scholar 

  53. Tang C, Hu D, Cao Q, Yan W, Xing B (2017) Silver nanoparticles-loaded activated carbon fibers using chitosan as binding agent: preparation, mechanism, and their antibacterial activity. Appl Surf Sci 394:457–465. https://doi.org/10.1016/j.apsusc.2016.10.095

    Article  CAS  Google Scholar 

  54. Zhao H, Guo Y, Zhu S, Song Y, Jin J, Ji W, Song W, Zhao B, Yang B, Ozaki Y (2017) Facile synthesis of silver nanoparticles/carbon dots for a charge transfer study and peroxidase-like catalytic monitoring by surface-enhanced Raman scattering. Appl Surf Sci 410:42–50. https://doi.org/10.1016/j.apsusc.2017.03.049

    Article  CAS  Google Scholar 

  55. Jose Ruben M, Jose Luis E, Alejandra C, Katherine H, Juan BK, Jose Tapia R, Miguel Jose Y (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346

    Article  Google Scholar 

  56. Han Y, Luo Z, Yuwen L, Tian J, Zhu X, Wang L (2013) Synthesis of silver nanoparticles on reduced graphene oxide under microwave irradiation with starch as an ideal reductant and stabilizer. Appl Surf Sci 266:188–193. https://doi.org/10.1016/j.apsusc.2012.11.132

    Article  CAS  Google Scholar 

  57. Rodríguez-León E, Iñiguez-Palomares R, Navarro RE, Herrera-Urbina R, Tánori J, Iñiguez-Palomares C, Maldonado A (2013) Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res Lett 8(1):318–318. https://doi.org/10.1186/1556-276X-8-318

    Article  Google Scholar 

  58. Faust JW, John HF (1964) The growth of semiconductor crystals from solution using the twin-plane reentrant-edge mechanism. J Phys Chem Solids 25(12):1407–1415. https://doi.org/10.1016/0022-3697(64)90055-1

    Article  CAS  Google Scholar 

  59. Hofmeister H (1991) Lattice defects in decahedral multiply twinned particles of palladium. Zeitschrift für Physik D Atoms, Molecules and Clusters 19(4):307–310. https://doi.org/10.1007/BF01448317

    Article  CAS  Google Scholar 

  60. Hofmeister H, Junghanns T (1995) Formation of nanocrystalline structures in amorphous thin films of germanium. J Non-Cryst Solids 192:550–555

    Article  Google Scholar 

Download references

Acknowledgements

The main author would like to acknowledge the Faculty of Mechanical Engineering, Universiti Malaysia Pahang, for the financial support through the Seed Money Grant RDU 16117and Internal Grant RDU1703152. The authors are grateful to Dr. Leo Bey Fern from Faculty of Medicine, University of Malaya, Malaysia, and Siti Farhana Bohari from Faculty of Mechanical Engineering, Universiti Malaysia Pahang, for providing support in HR-TEM results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurul Akmal Che Lah.

Ethics declarations

Disclosure statement

We hereby confirm that the disclosure made for this manuscript is complete and correct to the best of our information and belief. We agree that if we become aware of any information that might indicate that this disclosure is inaccurate or that we have not complied with the conflict of interest policy, we will notify the journal immediately.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lah, N.A.C., Johan, M.R., Samykano, M. et al. Truncated and spheroidal Ag nanoparticles: a matter of size transformation. Colloid Polym Sci 296, 121–131 (2018). https://doi.org/10.1007/s00396-017-4230-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4230-6

Keywords

Navigation