Skip to main content
Log in

Synthesis and gelation capability of mono- and disubstituted cyclo(L-Glu-L-Glu) derivatives with tyramine, tyrosine and phenylalanine

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A series of mono- and disubstituted glutamic cyclic dipeptide derivatives (cyclo(L-Glu-Glu)s) with tyramine, tyrosine, and phenylalanine (312) were synthesized and investigated as organo- and hydrogelators. Unexpectedly, both tyramine mono- and disubstituted cyclo(L-Glu-Glu)s showed no gelation toward all the selected organic solvents, phosphate-buffered saline (PBS), and water. However, those t-butyloxy (OtBu) protecting tyrosine and phenylalanine mono- and disubstituted cyclo(L-Glu-Glu)s in general presented a diversified gelation capability. Interestingly, the OtBu protecting tyrosine monosubstituted 10 enabled to gel PBS and water featuring a minimum gel concentration (MGC) of 1.0 and 2 wt% at room temperature, respectively. Furthermore, its hydrogelation in PBS can sustain to 44 °C at a concentration of 3 wt% under ultrasonication. After the deproction of OtBu groups, the phenylalanine monosubstituted 8 and tyrosine disubstituted 11 are only capable of gelling acetone showing a MGC of 2.0 and 3.0 wt%. A variety of self-assembled fibrous 3D networks were visible in the resulting organo- and hydrogels by TEM and SEM observations. Rheological measurements demonstrated the viscoelastic characteristics of all the gels. FTIR and fluorescence analyses also revealed that the intermolecular hydrogen bonding and π–π stacking interactions jointly play as major driving forces to promote those tyrosine and phenylalanine monosubstituted cyclo(L-Glu-Glu)s to self-assemble into intermeshing 3D network structures immobilizing a vast amount of organic solvent molecules. It was noted that a careful balance between the hydrophilicity and hydrophobicity as well as the hydrogen bonding interactions in 10 make a great contribution to the hydrogelation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Manchineella S (2016) T Govindaraju ChemPlusChem 81:1–20

    Article  Google Scholar 

  2. Hanabusa K (2016) M Suzuki Bull Chem Soc Jpn 89:174–182

    Article  CAS  Google Scholar 

  3. Rae-burn J, Cardoso AZ (2013) D J Adams Chem Soc rev 42:5143–5156

    Article  CAS  Google Scholar 

  4. Fleming S (2014) R V Ulijn Chem Soc rev 43:8150–8177

    Article  CAS  Google Scholar 

  5. Frederix PWJM, Scott GG, Abul-Haija YM, Kalafatovic D, Pappas CG, Javid N, Hunt NT, Ulijn RV (2015) T Tuttle Nat Chem 7:30–37

    Article  CAS  Google Scholar 

  6. Singh WP, Singh RS (2017) Beilstein J Org Chem 13:138–149

    CAS  Google Scholar 

  7. Rosiak JM, Shii FY, Rosiak JM, Meth FY (1999) Phys res B 151:56–64

    CAS  Google Scholar 

  8. Jeong B, Kim SW, Baeabb YH (2002) Adv Drug Delivery rev 54:37–51

    Article  CAS  Google Scholar 

  9. Zong QY, Geng HM, Ye L, Zhang AY, Shao ZQ (2016) Z G Feng Chem res Chin Univ 32:484–492

    Article  CAS  Google Scholar 

  10. Geng HM, Zong QY, You J, Ye L, Zhang AY, Feng ZG (2015) Sci. China Chem 53:78–85

    Google Scholar 

  11. B. L. Feringa, J. H. van Esch. Eur J Org Chem 2005, 3615–3631

  12. Baral A, Basak S, Basu K, Dehsorkhi A, Hamleyb LW, Banerjee A (2015) Soft Matter 11:4944–4951

    Article  CAS  Google Scholar 

  13. Hanabusa K (2014) M Suzuki Polym J 46:776–782

    Article  CAS  Google Scholar 

  14. Suzuki M (2009) K Hanabusa Chem Soc rev 38:967–975

    Article  CAS  Google Scholar 

  15. Tena-Solsona M, Miravet JF (2014) B Escuder Chem Eur J 20:1023–1031

    Article  CAS  Google Scholar 

  16. Kaur N, Zhou B, Breitbeil F, Hardy K, Kraft KS, Trantcheva I (2008) Phanstiel IV O Mol Pharm 5(2):294–315

    Article  CAS  Google Scholar 

  17. Fichman G, Gazit E (2014) Acta Biomater 10:1671–1682

    Article  CAS  Google Scholar 

  18. Bergeron RJ, Phanstiel IV O, Yao GW, Milstein S (1994) R W William J Am Chem Soc 116:8479–8484

    Article  CAS  Google Scholar 

  19. Borthwick AD (2012) Chem rev 112:3641–3716

    Article  CAS  Google Scholar 

  20. Xie ZG, Zhang AY, Ye L, Wang X (2009) Z G Feng J Mater Chem 19:6100–6102

    Article  CAS  Google Scholar 

  21. Xie ZG, Zhang AY, Ye L, Feng ZG (2009) Soft Matter 5:1474–1482

    Article  CAS  Google Scholar 

  22. Zong QY, Geng HM, Ye L, Zhang AY, Shao ZQ, Feng ZG (2015) Acta Chim Sinica 73:423–430

    CAS  Google Scholar 

  23. Geng HM, Ye L, Zhang AY, Li JB (2016) Z G Feng Langmuir 32:4586–4594

    Article  CAS  Google Scholar 

  24. Manchineella S, Govindaraju T (2012) RSC Adv 2:5539–5542

    Article  CAS  Google Scholar 

  25. Govindaraju T (2011) Supramol Chem 23:759–767

    Article  CAS  Google Scholar 

  26. Hoshizawa H, Minemura Y, Yoshikawa K, Suzuki M (2013) K Hanabusa Langmuir 29:14666–14673

    Article  CAS  Google Scholar 

  27. Kleinsmanna J (2013) J Nachtsheim Chem Commun 49:7818–7820

    Article  Google Scholar 

  28. Pianowski ZL, Karcher J (2016) K Schneider Chem Commun 52:3143–3146

    Article  CAS  Google Scholar 

  29. Parrish DA (2002) L J Mathias J Org Chem 67:1820–1826

    Article  CAS  Google Scholar 

  30. Geng HM, Zong QY, You J, Ye L, Zhang AY (2015) Z G Feng Chin J Appl Chem 32:900–908

    CAS  Google Scholar 

  31. M. D. Loos, B. L. Feringa, J. H. van Esch. Eur J Org Chem 2005, 3615–3631.

  32. K. Hanabusa, Y. Matsumoto, T. Miki, T. Koyama, H. Shirai. J Chem Soc Chem Commun 1994, 1401–1402.

  33. Majumder J (2016) P Dastidar Chem Eur J 22:9267–9276

    Article  CAS  Google Scholar 

  34. Shao H (2010) J R Parquette Chem Commun 46:4285–4287

    Article  CAS  Google Scholar 

  35. Lloyd GO (2009) J W Steed Nat Chem 1:437–442

    Article  CAS  Google Scholar 

  36. Piopenbrock MOM, Lloyd GO, Clarke N (2010) J W Steed Chem Rev 110:1960–2004

    Article  Google Scholar 

  37. T. Becker, B. C. Y. Goh, F. Jones, M. J. McIldowie, M. Mocerino, M. I. Ogden. Chem. Commun 2008, 3900–3902.

  38. Fichman G, Abramovich LA, Manohar S, Mironi-Harpaz I, Guterman T, Seliktar D, Messersmith PB, Gazit E (2014) ACS Nano 8:7220–7228

    Article  CAS  Google Scholar 

  39. Loo Y, Wong YC, Cai EZ, Ang CH, Raju A, Lakshmanan A, Koh AG, Zhou HJ, Lim TC, Moochhala SM (2014) C a E Hauser Biomaterials 35:4805–4814

    Article  CAS  Google Scholar 

  40. Wang HM, Yang CH, Tan M, Wang L, Kong DL, Yang ZM (2011) Soft Matter 7:3897–3905

    Article  CAS  Google Scholar 

  41. Awhida S, Draper ER, McDonald TO, Adams DJ (2015) J Colloid Interface Sci 455:24–31

    Article  CAS  Google Scholar 

  42. Cheng G, Castelletto V, Moulton BCM, Newby GE (2010) I W Hamley Langmuir 26:4990–4998

    CAS  Google Scholar 

  43. Dou XQ, Li P, Zhang D, Feng CL (2012) Soft Matter 8:3231–3238

    Article  CAS  Google Scholar 

  44. Smith AM, Williams RJ, Tang C, Coppo PC, Turner RF, Saiani ML (2008) A Ulijn R V Adv Mater 20:37–41

    CAS  Google Scholar 

  45. Yang Z, Gu H, Fu D, Gao P, Lam G (2004) B Xu Adv Mater 16:1440–1444

    Article  CAS  Google Scholar 

  46. Dou C, Wang C, Zhang H, Gao H (2010) Y Wang Chem Eur J 16:10744–10751

    Article  CAS  Google Scholar 

  47. John JH, Masuda G, Yoshida M, Shinkai K (2001) S Shimizu Langmuir 17:7229–7232

    Article  Google Scholar 

  48. Hanabusa K, Matsumoto B, Kimura M, Kakehi M, Shirai A (2000) J Colloid Interface Sci 224:231–244

    Article  CAS  Google Scholar 

  49. Cui HG, Muraoka T, Cheetham AG, Stupp SI (2009) Nano Lett 9:945

    Article  CAS  Google Scholar 

  50. Cheng PN, Pham JD, Nowick JS (2013) J Am Chem Soc 135:5477

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-guo Feng.

Ethics declarations

Founding

This study was found by the National Natural Science Foundation of China (No. 21174018).

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 822 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Hui, X., Geng, H. et al. Synthesis and gelation capability of mono- and disubstituted cyclo(L-Glu-L-Glu) derivatives with tyramine, tyrosine and phenylalanine. Colloid Polym Sci 295, 1549–1561 (2017). https://doi.org/10.1007/s00396-017-4120-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4120-y

Keywords

Navigation