Skip to main content
Log in

Localisation of alkaline phosphatase in the pore structure of paper

  • Invited Article
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We study the bulk pore structure of bioactive paper impregnated with an enzyme, alkaline phosphatase (ALP), retained with a cationic polyacrylamide (CPAM) with synchrotron small-angle x-ray scattering and examine the translational dynamics of water in the porous material using 1H pulsed field gradient NMR. The aim of this study is to understand the perturbation of enzyme kinetics from the bulk behavior through the localization of the enzyme within the pore structure. We interpret the small-angle x-ray scattering data where the range of length scales examined in the scattering experiment corresponds to the packing of the unitary crystallites, or microfibrils, and aggregates of these cellulosic microfibrils. Pulsed field gradient NMR measurement of H2O diffusion in the pores between these aggregates indicates that some of these pores are strongly connected allowing convective mass transport, while others exhibit strongly restricted diffusion. Diffusion is also strongly anisotropic. We conclude that the CPAM retention polymer and the protein coat interior surfaces inside the pores of a particular size and that there is no major modification of the pore structure of paper by the CPAM or the ALP. The transport properties of this porous matrix are discussed in terms of the mechanisms by which sorption of ALP may perturb enzyme kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aikio S, Grönqvist S, Hakola L, Hurme E, Jussila S, Kaukoniemi O.-V, Kopola H, Känsäkoski M, Leinonen M, Lippo S, Mahlberg, R, Peltonen S, Qvintus-Leino P, Rajamäki T, Ritschkoff A.-C, Smolander M, Vartiainen J, Viikari L, Vilkman M (2006) Bioactive paper and fibre products: patent and literature survey. In VTT Working Papers 51: pp 1–84.

  2. Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. Trends Anal Chem 28:925–942

    Article  CAS  Google Scholar 

  3. Khan MS, Fon D, Li X, Tian J, Forsythe J, Garnier G, Shen W (2010) Biosurface engineering through ink jet printing. Colloids Surf B 75:441–447

    Article  CAS  Google Scholar 

  4. Khan MS, Thouas G, Shen W, Whyte G, Garnier G (2010) Paper diagnostic for instantaneous blood typing. Anal Chem 82:4158–4164

    Article  CAS  Google Scholar 

  5. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320

    Article  CAS  Google Scholar 

  6. Martinez AW, Phillips ST, Whitesides GM (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10

    Article  CAS  Google Scholar 

  7. Khan MS, Li X, Shen W, Garnier G (2010) Thermal stability of bioactive enzymatic papers. Colloids Surf B 75:239–246

    Article  CAS  Google Scholar 

  8. Coleman JE (1992) Structure and mechanism of alkaline-phosphatase. Ann Rev Biophysics 21:441–483

    CAS  Google Scholar 

  9. Khan MS, Garnier G (2013) Direct measurement of alkaline phosphatase kinetics on bioactive paper. Chem Eng Sci 87:91–99

    Article  CAS  Google Scholar 

  10. Di Risio S, Yan N (2010) Adsorption and inactivation behavior of horseradish peroxidase on various substrates. Colloid Surf B 79:397–402

    Article  CAS  Google Scholar 

  11. Llinas P, Stura EA, Menez A, Kiss Z, Stigbrand T, Millan JL, Le Du MH (2005) Structural studies of human placental alkaline phosphatase in complex with functional ligands. J Mol Biol 350:441–451

    Article  CAS  Google Scholar 

  12. Delafourniere L, Nosjean O, Buchet R, Roux B (1995) Thermal and pH stabilities of alkaline-phosphatase from bovine intestinal-mucosa—a FTIR study. Biochim Biophys Acta Protein Struct Molec Enzym 1248:186–192

    Article  Google Scholar 

  13. Simopoulos TT, Jencks WP (1994) Alkaline-phosphatase is an almost perfect enzyme. Biochemistry 33:10375–10380

    Article  CAS  Google Scholar 

  14. Tischer W, Wedekind F (1999) Immobilized enzymes: methods and applications. Biocatalysis 200:95–126

    CAS  Google Scholar 

  15. Garvey C J, Chapman B E, Parker I H, Simon G P, Kuchel P W (1999) Probing the structure of wood pulps with NMR q-space imaging. 53rd Appita p 59–64.

  16. Svergun D, Barberato C, Koch MHJ (1995) CRYSOL—a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28:768–773

    Article  CAS  Google Scholar 

  17. Glatter O, Kratky O (1982) Small angle x-ray scattering. Academic Press, Chicago

    Google Scholar 

  18. Missori M, Mondelli C, De Spirito M, Castellano C, Bicchieri M, Schweins R, Arcovito G, Papi M, Castellano AC (2006) Modifications of the mesoscopic structure of cellulose in paper degradation. Phys Rev Lett 97:238001

    Article  Google Scholar 

  19. Kato KL, Cameron RE (1999) Structure-property relationships in thermally aged cellulose fibers and paper. J Appl Polym Sci 74:1465–1477

    Article  CAS  Google Scholar 

  20. Garvey CJ, Parker IH, Knott RB, Simon GP (2004) Small angle scattering in the Porod region from hydrated paper sheets at varying humidities. Holzforschung 58:473–479

    Article  CAS  Google Scholar 

  21. Garvey CJ, Knott RB, Searson M, Conroy JP (2006) USANS study of wood structure. Physica B 385-86:877–879

    Article  Google Scholar 

  22. Jakob HF, Fratzl P, Tschegg SE (1994) Size and arrangement of elementary cellulose fibrils in wood cells—a small-angle x-ray-scattering study of Picea abies. J Struct Biol 113:13–22

    Article  Google Scholar 

  23. Jakob HF, Fengel D, Tschegg SE, Fratzl P (1995) The elementary cellulose fibril in Picea abies: comparison of transmission electron microscopy, small-angle X-ray scattering, and wide-angle X-ray scattering results. Macromolecules 28:8782–8787

    Article  CAS  Google Scholar 

  24. Jakob HF, Tschegg SE, Fratzl P (1996) Hydration dependence of the wood-cell wall structure in Picea abies. A small-angle X-ray scattering study. Macromolecules 29:8435–8440

    Article  CAS  Google Scholar 

  25. Li T-Q, Henriksson U, Klason T, Ödberg L (1992) Water diffusion in wood pulp cellulose fibers studied by means of the pulsed gradient spin-echo method. J Colloid Interface Sci 154:305–315

    Article  CAS  Google Scholar 

  26. Heyn ANJ (1979) Confirmation and complementation of the conclusions from small-angle x-ray-scattering of cellulose by direct electron-microscope observations. J Appl Crystallogr 12:395–396

    Article  CAS  Google Scholar 

  27. Kirby NM, Mudie ST, Hawley AM, Cookson DJ, Mertens HDT, Cowieson N, Samardzic-Boban V (2013) A low-background-intensity focusing small-angle X-ray scattering undulator beamline. J Appl Crystallogr 46:1670–1680

    Article  CAS  Google Scholar 

  28. Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36:1277–1282

    Article  CAS  Google Scholar 

  29. Tanner JE (1970) Use of stimulated echo in NMR-diffusion studies. J Chem Phys 52:2523–252&

    Article  CAS  Google Scholar 

  30. Callaghan P (1993) Principles of nuclear magnetic resonance microscopy. Clarendon Press, Oxford

    Google Scholar 

  31. Tanner JE, Stejskal EO (1968) Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method. J Chem Phys 49:1768–1777

    Article  CAS  Google Scholar 

  32. Brownstein KR, Tarr CE (1979) Importance of classical diffusion in nmr-studies of water in biological cells. Phys Rev A 19:2446–2453

    Article  Google Scholar 

  33. Stejskal EO (1965) Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic restricted diffusion and flow. J Chem Phys 43:3597–3603

    Article  Google Scholar 

  34. OrginPro V9.0, (2012) OriginLab Corporation: Northampton, MA, USA

  35. Goderis B, Reynaers H, Koch MHJ, Mathot VBF (1999) Use of SAXS and linear correlation functions for the determination of the crystallinity and morphology of semi-crystalline polymers. Application to linear polyethylene. J Polymer Sci Part B Polymer Phys 37:1715–1738

    Article  CAS  Google Scholar 

  36. IgorPro, 6.34 (2013) WaveMetrics, Inc, Oswego, NY

  37. Misra T, Bisoyi DK, Khan N, Patel T (1991) The effect of temperature on the fine-structural characteristics of cotton fiber—a small-angle X-ray-scattering investigation using correlation-functions. J Appli Cryst 24:712–714

    Article  CAS  Google Scholar 

  38. Misra T, Bisoyi DK, Patel T, Patra KC, Patel A (1988) Small-angle X-ray study of cellulose in cotton using correlation-functions. Polymer J 20:739–749

    Article  CAS  Google Scholar 

  39. Garvey CJ, Parker IH, Simon GP (2005) On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres. Macromol Chem Phys 206:1568–1575

    Article  CAS  Google Scholar 

  40. Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420

    Article  CAS  Google Scholar 

  41. Koyama M, Helbert W, Imai T, Sugiyama J, Henrissat B (1997) Parallel-up structure evidences the molecular directionality during biosynthesis of bacterial cellulose. PNAS 94:9091–9095

    Article  CAS  Google Scholar 

  42. Krässig H A (1993) Cellulose: structure, accessibility, and reactivity. CRC PressINC

  43. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS 108:E1195–E1203

    Article  Google Scholar 

  44. Porod G (1951) Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. Colloid Polymer Sci 124:83–114

    CAS  Google Scholar 

  45. Porod G (1952) Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen. II. Teil. Colloid Polymer Sci 125:108–122

    Google Scholar 

  46. Sinha SK, Sirota EB, Garoff S, Stanley HB (1988) X-ray and neutron scattering from rough surfaces. Phys Rev B 38:2297–2311

    Article  CAS  Google Scholar 

  47. Luzzati V, Nicolaieff A, Witz J (1961) Determination De La Masse Et Des Dimensions Des Des Proteins En Solution Par La Diffusion Centrale Des Rayons X Mesuree A Lechelle Absolute—Exemple Du Lysozyme. J Molec Biol 3:367–482

    Article  CAS  Google Scholar 

  48. Garvey CJ, Parker I, Simon G, Whittaker A (2006) The hydration of paper studied with solid-state magnetisation-exchange H-1 NMR spectroscopy. Holzforschung 60:409–416

    Article  CAS  Google Scholar 

  49. Holz M, Heil SR, Sacco A (2000) Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys Chem Chem Phys 2:4740–4742

    Article  CAS  Google Scholar 

  50. Callaghan PT, Eccles CD, Xia Y (1988) NMR microscopy of dynamic displacements - k-space and q-space imaging. J Phys E Sci Instrum 21(8):820–822

    Article  CAS  Google Scholar 

  51. Cory DG, Garroway AN (1990) Measurement of translational displacement probabilities by NMR—an indicator of compartmentation. Magn Reson Med 14(3):435–444

    Article  CAS  Google Scholar 

  52. Tallarek U, van Dusschoten D, Van As H, Bayer E, Guiochon G (1998) Study of transport phenomena in chromatographic columns by pulsed field gradient NMR. J Phys Chem B 102(18):3486–3497

    Article  CAS  Google Scholar 

  53. Hedin N, Furo I (1998) Temperature imaging by H-1 NMR and suppression of convection in NMR probes. J Magn Reson 131(1):126–130

    Article  CAS  Google Scholar 

  54. Bracewell, RN (2000) The Fourier transform and its applications. McGraw Hill

  55. Akahori Y, Yamazaki H, Nishio G, Matsunaga H, Mitsubayashi K (2004) An alcohol gas-sensor using an enzyme immobilized paper. Chem Sensors 20(Suppl. B):468–469

    CAS  Google Scholar 

  56. Brena BM, Batista-Viera F (2006) Immobilization of enzymes. In: Guisan JM (ed) Methods in biotechnology: immobilization of enzymes and cells, 2nd edn. Human Press, Totowa, pp. 15–30

    Chapter  Google Scholar 

  57. Zaccai G (2000) Biochemistry—how soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288(5471):1604–1607

    Article  CAS  Google Scholar 

  58. Sacquin-Mora S, Lavery R (2006) Investigating the local flexibility of functional residues in hemoproteins. Biophys J 90(8):2706–2717

    Article  CAS  Google Scholar 

  59. Colaianni SEM, Aubard J, Hansen SH, Nielsen OF (1995) Raman-spectroscopic studies of some biochemically relevant molecules. Vib Spectrosc 9(1):111–120

    Article  CAS  Google Scholar 

  60. Colaianni SEM, Nielsen OF (1995) Low-frequency Raman-spectroscopy. J Mol Struct 347:267–283

    Article  Google Scholar 

  61. Li R, Fowler JA, Todd BA (2014) Calculated rates of diffusion-limited reactions in a three-dimensional network of connected compartments: application to porous catalysts and biological systems. Phys Rev Lett 113(2):028303

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks to Dr. Nathan Cowieson for expertise on the Synchrotron and to the Australian Synchrotron for beam time. CJG would like to thank Dr. Bogdan Chapman and Professor Philip Kuchel of the University of Sydney’s School of Molecular Biosciences for assistance with NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Garvey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garvey, C.J., Khan, M.S., Weir, M.P. et al. Localisation of alkaline phosphatase in the pore structure of paper. Colloid Polym Sci 295, 1293–1304 (2017). https://doi.org/10.1007/s00396-017-4037-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-017-4037-5

Keywords

Navigation