Skip to main content
Log in

Synthesis of polymer organogelators using hydrogen bonding as physical cross-links

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The synthesis of a monomer containing fourfold hydrogen bonding groups 2-(((6-(6-methyl-4[1H]pyrimidionylureido)hexyl)carbamoyl)oxy)ethyl methacrylate (UPyEMA) and its copolymerization with either n-butyl acrylate, tert-butyl acrylate, or styrene using reversible addition-fragmentation chain transfer (RAFT) polymerization is reported. The copolymers possessed high molecular weight and narrow molecular weight distributions and formed stable organogels in both chloroform and 1,2-dichlorobezene. Critical gelation concentrations were determined and the rheology of the organogels characterized. A novel monomer containing pyrene was prepared, and its polymerization under RAFT control was demonstrated. The pyrene-containing monomer was copolymerized with the polymer organogelators forming fluorescent organogels. It is proposed that these gels are suitable for two-photon upconversion applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sahoo S, Kumar N, Bhattacharya C, Sagiri S, Jain K, Pal K, Ray S, Nayak B (2011) Organogels: properties and applications in drug delivery. Des Monomers Polym 14:95–108

    Article  CAS  Google Scholar 

  2. Ajayaghosh A, Praveen VK, Vijayakumar C (2008) Organogels as scaffolds for excitation energy transfer and light harvesting. Chem Soc Rev 37:109–122

    Article  CAS  Google Scholar 

  3. Puigmartí‐Luis J, Laukhin V, Pérez del Pino Á, Vidal‐Gancedo J, Rovira C, Laukhina E, Amabilino DB (2007) Supramolecular conducting nanowires from organogels. Angew Chem Int Ed 46:238–241

    Article  CAS  Google Scholar 

  4. Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJ, Hirschberg JK, Lange RF, Lowe JK, Meijer E (1997) Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278:1601–1604

    Article  CAS  Google Scholar 

  5. Li G, McGown LB (1994) Molecular nanotube aggregates of β-and γ-cyclodextrins linked by diphenylhexatrienes. Science 264:249–251

    Article  CAS  Google Scholar 

  6. Van Nostrum CF, Nolte RJ (1996) Functional supramolecular materials: self-assembly of phthalocyanines and porphyrazines. Chem Commun 1996:2385–2392

    Article  Google Scholar 

  7. Michelsen U, Hunter CA (2000) Self-assembled porphyrin polymers. Angew Chem Int Ed 39:764–767

    Article  CAS  Google Scholar 

  8. Liu Z-X, Feng Y, Yan Z-C, He Y-M, Liu C-Y, Fan Q-H (2012) Multistimuli responsive dendritic organogels based on azobenzene-containing poly(aryl ether) dendron. Chem Mater 24:3751–3757

    Article  CAS  Google Scholar 

  9. Liu Q, Wang Y, Li W, Wu L (2007) Structural characterization and chemical response of a Ag-coordinated supramolecular gel. Langmuir 23:8217–8223

    Article  CAS  Google Scholar 

  10. Thibault RJ, Hotchkiss PJ, Gray M, Rotello VM (2003) Thermally reversible formation of microspheres through non-covalent polymer cross-linking. J Am Chem Soc 125:11249–11252

    Article  CAS  Google Scholar 

  11. Girolamo M, Keller A, Miyasaka K, Overbergh N (1976) Gelation‐crystallization in isotactic polystyrene solutions and its implications to crystal morphology, to the origin and structure of gels, and to the chemical homogeneity of polyolefins. J Polym Sci B Polym Phys 14:39–61

    Article  CAS  Google Scholar 

  12. Saiani A, Guenet JM (1997) On the helical form in syndiotactic poly(methyl methacrylate) thermoreversible gels as revealed by small-angle neutron scattering. Macromolecules 30:966–972

    Article  CAS  Google Scholar 

  13. Kim KT, Park C, Vandermeulen GW, Rider DA, Kim C, Winnik MA, Manners I (2005) Gelation of helical polypeptide–random coil diblock copolymers by a nanoribbon mechanism. Angew Chem 117:8178–8182

    Article  Google Scholar 

  14. Tadmor R, Khalfin RL, Cohen Y (2002) Reversible gelation in isotropic solutions of the helical polypeptide poly (γ-benzyl-l-glutamate): kinetics and formation mechanism of the fibrillar network. Langmuir 18:7146–7150

    Article  CAS  Google Scholar 

  15. Hentschel J, Börner HG (2006) Peptide-directed microstructure formation of polymers in organic media. J Am Chem Soc 128:14142–14149

    Article  CAS  Google Scholar 

  16. Naik SS, Savin DA (2009) Poly (Z-lysine)-based organogels: effect of interfacial frustration on gel strength. Macromolecules 42:7114–7121

    Article  CAS  Google Scholar 

  17. Carretti E, Dei L, Baglioni P, Weiss RG (2003) Synthesis and characterization of gels from polyallylamine and carbon dioxide as gellant. J Am Chem Soc 125:5121–5129

    Article  CAS  Google Scholar 

  18. Suzuki M, Hanabusa K (2010) Polymer organogelators that make supramolecular organogels through physical cross-linking and self-assembly. Chem Soc Rev 39:455–463

    Article  CAS  Google Scholar 

  19. Mansfeld U, Winter A, Hager MD, Hoogenboom R, Günther W, Schubert US (2013) Orthogonal self-assembly of stimuli-responsive supramolecular polymers using one-step prepared heterotelechelic building blocks. Polym Chem 4:113–123

    Article  CAS  Google Scholar 

  20. Park T, Zimmerman SC, Nakashima S (2005) A highly stable quadruply hydrogen-bonded heterocomplex useful for supramolecular polymer blends. J Am Chem Soc 127:6520–6521

    Article  CAS  Google Scholar 

  21. Li J, Lewis CL, Chen DL, Anthamatten M (2011) Dynamic mechanical behavior of photo-cross-linked shape-memory elastomers. Macromolecules 44:5336–5343

    Article  CAS  Google Scholar 

  22. Feldman KE, Kade MJ, Meijer E, Hawker CJ, Kramer EJ (2009) Model transient networks from strongly hydrogen-bonded polymers. Macromolecules 42:9072–9081

    Article  CAS  Google Scholar 

  23. Cui J, del Campo A (2012) Multivalent H-bonds for self-healing hydrogels. Chem Commun 48:9302–9304

    Article  CAS  Google Scholar 

  24. Sijbesma RP, Meijer EW (2003) Quadruple hydrogen bonded systems. Chem Commun 2003:5–16

    Article  CAS  Google Scholar 

  25. Folmer BJB, Sijbesma RP, Versteegen RM, van der Rijt JAJ, Meijer EW (2000) Supramolecular polymer materials: chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv Mater 12:874–878

    Article  CAS  Google Scholar 

  26. Chen YH, Ballard N, Gayet F, Bon SAF (2012) High internal phase emulsion gels (HIPE-gels) from polymer dispersions reinforced with quadruple hydrogen bond functionality. Chem Commun 48:1117–1119

    Article  CAS  Google Scholar 

  27. Lewis CL, Anthamatten M (2013) Synthesis, swelling behavior, and viscoelastic properties of functional poly(hydroxyethyl methacrylate) with ureidopyrimidinone side-groups. Soft Matter 9:4058–4066

    Article  CAS  Google Scholar 

  28. Berda EB, Foster EJ, Meijer E (2010) Toward controlling folding in synthetic polymers: fabricating and characterizing supramolecular single-chain nanoparticles. Macromolecules 43:1430–1437

    Article  CAS  Google Scholar 

  29. Yamauchi K, Lizotte JR, Long TE (2003) Thermoreversible poly (alkyl acrylates) consisting of self-complementary multiple hydrogen bonding. Macromolecules 36:1083–1088

    Article  CAS  Google Scholar 

  30. Brandrup J, Immergut EH, Grulke EA, Abe A, Bloch DR (1999) Polymer handbook, vol 89. Wiley, New York

    Google Scholar 

  31. Chen X, Fei P, Cavicchi KA, Yang W, Ayres N (2014) The poor solubility of ureidopyrimidone can be used to form gels of low molecular weight N-alkyl urea oligomers in organic solvents. Colloid Polym Sci 292:477–484

    Article  CAS  Google Scholar 

  32. Wang H, Han A, Cai Y, Xie Y, Zhou H, Long J, Yang Z (2013) Multifunctional biohybrid hydrogels for cell culture and controlled drug release. Chem Commun 49:7448–7450

    Article  CAS  Google Scholar 

  33. Yuan J, Fang X, Zhang L, Hong G, Lin Y, Zheng Q, Xu Y, Ruan Y, Weng W, Xia H (2012) Multi-responsive self-healing metallo-supramolecular gels based on “click” ligand. J Mater Chem 22:11515–11522

    Article  CAS  Google Scholar 

  34. Duan J, Liang X, Cao Y, Wang S, Zhang L (2015) High strength chitosan hydrogels with biocompatibility via new avenue based on constructing nanofibrous architecture. Macromolecules 48:2706–2714

    Article  CAS  Google Scholar 

  35. Aida T, Meijer E, Stupp S (2012) Functional supramolecular polymers. Science 335:813–817

    Article  CAS  Google Scholar 

  36. Shih H, Lin C-C (2012) Cross-linking and degradation of step-growth hydrogels formed by thiol–ene photoclick chemistry. Biomacromolecules 13:2003–2012

    Article  CAS  Google Scholar 

  37. Wei Z, Yang JH, Zhou J, Xu F, Zrínyi M, Dussault PH, Osada Y, Chen YM (2014) Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem Soc Rev 43:8114–8131

    Article  CAS  Google Scholar 

  38. Rodell CB, Kaminski AL, Burdick JA (2013) Rational design of network properties in guest–host assembled and shear-thinning hyaluronic acid hydrogels. Biomacromolecules 14:4125–4134

    Article  CAS  Google Scholar 

  39. Yu X, Cao X, Chen X, Ayres N, Zhang P (2015) Triplet-triplet annihilation upconversion from rationally designed polymeric emitters with tunable inter-chromophore distances. Chem Commun 51:588–591

    Article  CAS  Google Scholar 

  40. Islangulov RR, Lott J, Weder C, Castellano FN (2007) Noncoherent low-power upconversion in solid polymer films. J Am Chem Soc 129:12652–12653

    Article  CAS  Google Scholar 

  41. Singh-Rachford TN, Lott J, Weder C, Castellano FN (2009) Influence of temperature on low-power upconversion in rubbery polymer blends. J Am Chem Soc 131:12007–12014

    Article  CAS  Google Scholar 

  42. Lee SH, Lott JR, Simon YC, Weder C (2013) Melt-processed polymer glasses for low-power upconversion via sensitized triplet-triplet annihilation. J Mater Chem C 1:5142–5148

    Article  CAS  Google Scholar 

  43. Baluschev S, Jacob J, Avlasevich YS, Keivanidis PE, Miteva T, Yasuda A, Nelles G, Grimsdale AC, Müllen K, Wegner G (2005) Enhanced operational stability of the up-conversion fluorescence in films of palladium–porphyrin end-capped poly(pentaphenylene). ChemPhysChem 6:1250–1253

    Article  CAS  Google Scholar 

  44. Wohnhaas C, Friedemann K, Busko D, Landfester K, Baluschev S, Crespy D, Turshatov A (2013) All organic nanofibers as ultralight versatile support for triplet–triplet annihilation upconversion. ACS Macro Lett 2:446–450

    Article  CAS  Google Scholar 

  45. Litvinov VM, Persyn O, Miri V, Lefebvre JM (2010) Morphology, phase composition, and molecular mobility in polyamide films in relation to oxygen permeability. Macromolecules 43:7668–7679

    Article  CAS  Google Scholar 

  46. Zhao W, Castellano FN (2006) Upconverted emission from pyrene and di-tert-butylpyrene using Ir (ppy) 3 as triplet sensitizer. J Phys Chem A 110:11440–11445

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Acknowledgment is made to the donors of the American Chemical Society Petroleum Research Fund (51850-DN17) for support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil Ayres.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1449 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Chen, X., Chai, Q. et al. Synthesis of polymer organogelators using hydrogen bonding as physical cross-links. Colloid Polym Sci 294, 59–68 (2016). https://doi.org/10.1007/s00396-015-3797-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3797-z

Keywords

Navigation