Skip to main content
Log in

Electrorheological performances of poly(o-toluidine) and p-toluenesulfonic acid doped poly(o-toluidine) suspensions

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Poly(o-toluidine) (POT) and p-toluenesulfonic acid doped poly(o-toluidine) (TSA-POT) were synthesized via chemical oxidation and emulsion polymerization, respectively. The rheological measurements of the dedoped POT and TSA-POT silicone oil suspensions showed that both of the suspensions exhibited electrorheological (ER) effect under electric field. The analyses of the rheological curves of suspension indicated that POT and TSA-POT suspensions presented different flow behaviors. POT suspensions presented fast polarization under external electric field with the existence of critical shear rates (γ crit), and POT suspensions behaved well with Bingham model above γ crit TSA-POT suspension behaved very well with Cho–Choi–Jhon model in all shear rate regions. Both of static and dynamic yield stresses for POT and TSA-POT suspensions in electric field were proportional to the square of electric field strength. The different ER performances between POT and TSA-POT suspensions were explained based on the conductivity and dielectric constant of the particles. The modification of conductivity and dielectric constant by doping POT with TSA improved the ER performance of TSA-POT suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Halsey TC (1992) Electrorheological fluids. Science 258:761–766

    Article  CAS  Google Scholar 

  2. Winslow WM (1949) Induced fibration of suspensions. J Appl Phys 20:1137–1130

    Article  CAS  Google Scholar 

  3. Sheng P, Wen W (2012) Electrorheological fluids: Mechanisms, dynamics, and microfluidics applications. Annu Rev Fluid Mech 44:143–174

    Article  Google Scholar 

  4. Liu YD, Choi HJ (2012) Electrorheological fluids: smart soft matter and characteristics. Soft Matter 8:11961–11978

    Article  CAS  Google Scholar 

  5. Hao T (2002) Electrorheological suspensions. Adv Colloid Interf 97:1–35

    Article  CAS  Google Scholar 

  6. Gow CJ, Zukoski C (1990) The electrorheological properties of polyaniline suspensions. J Colloid Interface Sci 136:175–188

    Article  CAS  Google Scholar 

  7. Sim IS, Kim JW, Choi HJ, Kim CA, Jhon MS (2001) Preparation and electrorheological characteristics of poly(p-phenylene)-based suspensions. Chem Mater 13:1243–1247

    Article  CAS  Google Scholar 

  8. Chotpattananont D, Sirivat A, Jamieson AM (2006) Creep and recovery behaviors of a polythiophene-based electrorheological fluid. Polymer 47:3568–3578

    Article  CAS  Google Scholar 

  9. Goodwin JW, Markham GM, Vincent B (1997) Studies on model electrorheological fluids. J Phys Chem B 101:1961–1967

    Article  CAS  Google Scholar 

  10. Gercek B, Yavuz M, Yilmaz H, Sari B, Unal HI (2007) Comparison of electrorheological properties of some polyaniline derivatives. Colloid Surface A 299:124–132

    Article  CAS  Google Scholar 

  11. Zhang L, Su K, Li X (2003) Electrorheological effects of polyaniline-type electrorheological fluids. J Appl Polym Sci 87:733–740

    Article  CAS  Google Scholar 

  12. Yin J, Zhao X (2011) Electrorheology of nanofiber suspensions. Nanoscale Res Lett 6:256

    Article  Google Scholar 

  13. Yin J, Xia X, Xiang L, Qiao Y, Zhao X (2009) The electrorheological effect of polyaniline nanofiber, nanoparticle and microparticle suspensions. Smart Mater Struct 18:095007

    Article  Google Scholar 

  14. Yin J, Xia X, Xiang L, Zhao X (2010) Coaxial cable-like polyaniline@titania nanofibers: facile synthesis and low power electrorheological fluid application. J Mater Chem 20:7096–7099

    Article  CAS  Google Scholar 

  15. Liu YD, Choi HJ (2013) Recent progress in smart polymer composite particles in electric and magnetic fields. Polym Int 62:147–151

    Article  CAS  Google Scholar 

  16. Kim SG, Lim JY, Sung JH, Choi HJ, Seo Y (2007) Emulsion polymerized polyaniline synthesized with dodecylbenzenesulfonic acid and its electrorheological characteristics: Temperature effect. Polymer 48:6622–6631

    Article  CAS  Google Scholar 

  17. Jang WH, Kim JW, Choi HJ, Jhon MS (2001) Synthesis and electrorheology of camphorsulfonic acid doped polyaniline suspensions. Colloid Polym Sci 279:823–827

    Article  CAS  Google Scholar 

  18. Kim SG, Kim JW, Choi HJ, Suh MS, Shin MJ, Jhon MS (2000) Synthesis and electrorheological characterization of emulsion-polymerized dodecylbenzenesulfonic acid doped polyaniline-based suspensions. Colloid Polym Sci 278:894–898

    Article  CAS  Google Scholar 

  19. Parthasarathy M, Klingenberg DJ (1996) Electrorheology: Mechanisms and models. Mater Sci Eng R 17:57–103

    Article  Google Scholar 

  20. Wu C, Conrad H (1996) A modified conduction model for the electrorheological effect. J Phys D Appl Phys 29:3147–3153

    Article  CAS  Google Scholar 

  21. Khusid B, Acrivos A (1995) Effects of conductivity in electric-field-induced aggregation in electrorheological fluids. Phys Rev E 52:1669–1693

    Article  CAS  Google Scholar 

  22. Wen W, Huang X, Sheng P (2004) Particle size scaling of the giant electrorheological effect. Appl Phys Lett 85:299

    Article  CAS  Google Scholar 

  23. Kulkarni MV, Viswanath AK, Aiyer RC, Khanna PK (2005) Synthesis, characterization, and morphology of p-toluene sulfonic acid-doped polyaniline: A material for humidity sensing application. J Polym Sci Polym Phys 43:2161–2169

    Article  CAS  Google Scholar 

  24. Yin J, Xia X, Wang X, Zhao X (2011) The electrorheological effect and dielectric properties of suspensions containing polyaniline@titania nanocable-like particles. Soft Matter 7:10978–10986

    Article  CAS  Google Scholar 

  25. Kulkarni MV, Viswanath AK, Mulik UP (2005) Studies on chemically synthesized organic acid doped poly(o-toluidine). Mater Chem Phys 89:1–5

    Article  CAS  Google Scholar 

  26. Yin J, Xia X, Zhao X (2012) Conductivity, polarization and electrorheological activity of polyaniline nanotubes during thermo-oxidative treatment. Polyme Degrad Stabil 97:2356–2363

    Article  CAS  Google Scholar 

  27. Yin J, Xia X, Xiang L, Zhao X (2010) Conductivity and polarization of carbonaceous nanotubes derived from polyaniline nanotubes and their electrorheology when dispersed in silicone oil. Carbon 48:2958–2967

    Article  CAS  Google Scholar 

  28. Yin JB, Zhao XP (2006) Enhanced electrorheological activity of mesoporous Cr-doped TiO2 from activated pore wall and high surface area. J Phys Chem B 110:12916–12925

    Article  CAS  Google Scholar 

  29. Choi CS, Park SJ, Choi HJ (2007) Carbon nanotube/polyaniline nanocomposites and their electrorheological characteristics under an applied electric field. Curr Appl Phys 7:352–355

    Article  Google Scholar 

  30. Liu YD, Fang FF, Choi HJ (2010) Core-shell structured semiconducting PMMA/polyaniline snowman-anisotropic microparticles and their electrorheology. Langmuir 261:2849–12854

    Google Scholar 

  31. Wu J, Xu G, Cheng Y, Liu F, Guo J, Cui P (2012) The influence of high dielectric constant core on the activity of core–shell structure electrorheological fluid. J Colloid Interface Sci 378:36–43

    Article  CAS  Google Scholar 

  32. Zhang WL, Liu YD, Choi HJ (2011) Graphene oxide coated core-shell structured polystyrene microspheres and their electrorheological characteristics under applied electric field. J. Mater Chem 21:6916–6921

    Article  CAS  Google Scholar 

  33. Seo YP, Choi HJ, Seo Y (2012) A simplified model for analyzing the flow behavior of electrorheological fluids containing silica nanoparticle-decorated polyaniline nanofibers. Soft Matter 8:4659–4663

    Article  Google Scholar 

  34. Liu Z, Lin Y, Wen X, Su Q (2005) Preparation and electrorheological properties of polyquin(2,3-b)acridine-12,14(5,7)dione-based suspensions. Colloid Surface A 264:55–60

    Article  CAS  Google Scholar 

  35. Shin K, Kim D, Cho J-C, Lim H-S, Kim JW, Suh K-D (2012) Monodisperse conducting colloidal dipoles with symmetric dimer structure for enhancing electrorheology properties. J Colloid Interf Sci 374:18–24

    Article  CAS  Google Scholar 

  36. Yin J, Shui Y, Chang R, Zhao X (2012) Graphene-supported carbonaceous dielectric sheets and their electrorheology. Carbon 50:5247–5255

    Article  CAS  Google Scholar 

  37. Kim MJ, Liu YD, Choi HJ (2014) Urchin-like polyaniline microspheres fabricated from self-assembly of polyaniline nanowires and their electro-responsive characteristics. Chem Eng J 235:186–190

    Article  CAS  Google Scholar 

  38. Kim JW, Jang WH, Choi HJ, Joo J (2001) Synthesis and electrorheological characteristics of polyaniline derivates with different substituents. Synthetic Met 119:173–174

    Article  CAS  Google Scholar 

  39. Cheng Y, Guo J, Liu X, Sun A, Xu G, Cui P (2011) Preparation of uniform titania microspheres with good electrorheological performance and their size effect. J Mater Chem 21:5051–5056

    Article  CAS  Google Scholar 

  40. Cho MS, Choi HJ, Jhon MS (2005) Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer 46:11484–11488

    Article  CAS  Google Scholar 

  41. Zhang J, Zhu D, Matsuo M (2008) Synthesis and characterization of polyacene quinone radical polymers with high-dielectric constant. Polymer 49:5424–5430

    Article  CAS  Google Scholar 

  42. Palaniappan S, John A (2008) Polyaniline materials by emulsion polymerization pathway. Prog Polym Sci 33:732–758

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanpeng Liu or Ping Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 680 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wen, X., Liu, Z. et al. Electrorheological performances of poly(o-toluidine) and p-toluenesulfonic acid doped poly(o-toluidine) suspensions. Colloid Polym Sci 293, 1391–1400 (2015). https://doi.org/10.1007/s00396-015-3523-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-015-3523-x

Keywords

Navigation