Skip to main content

Advertisement

Log in

Preparation of electroactive nanofibers of star-shaped polycaprolactone/polyaniline blends

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A biodegradable five-arm star-shaped polymer based on poly(ε-caprolactone) (PCL) was synthesized. Green synthesis of biodegradable star-shaped PCL was performed by Sn(Oct)2-catalyzed ring-opening polymerization (ROP) of ε-caprolactone (CL) from a glucose core. The chemical structure of star-shaped PCL was investigated by Fourier transform infrared spectroscopy (FTIR), and the average molecular weight of the polymer was determined by 1HNMR (about 38,000 g mol−1). Thermogravimetric analysis (TGA) curve displayed a main degradation step between 230 and 410 °C where PCL degraded at the maximum rate. The residual mass can be attributed to degradation of the glucose core and its functional groups. Uniform fibers consisting of blends of star-shaped PCL and polyaniline (PANI) were prepared with different feed ratios in a chloroform/dimethylformamide (DMF) solvent system by electrospinning technique. The scanning electron microscopy (SEM) of samples showed the morphology of star-shaped PCL nanofibers with and without PANI. The presence of PANI does not relevantly affect the fiber architecture which shows a slight reduction of the average fiber diameter from 125 to 81 nm and significant decrease of bead formation. Moreover, the cyclic voltammetry (CV) measurement confirmed the preparation of electroactive nanofibers. Here, we combined the advantages of star-shaped PCL with benefits of electrospinning method for obtainment of the uniform nanofibers with possible potential for use in tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Pektok E, Nottelet B, Tille JC et al (2008) Degradation and healing characteristics of small-diameter poly(epsilon-caprolactone) vascular grafts in the rat systemic arterial circulation. Circulation 118:2563–2570. doi:10.1161/CIRCULATIONAHA.108.795732

    Article  CAS  Google Scholar 

  2. Melchels FPW, Feijen J, Grijpma DW (2009) A poly(D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30:3801–3809. doi:10.1016/j.biomaterials.2009.03.055

    Article  CAS  Google Scholar 

  3. Wu LB, Ding JD (2004) In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 25:5821–5830. doi:10.1016/j.biomaterials.2004.01.038

    Article  CAS  Google Scholar 

  4. Albertsson AC, Varma IK (2003) Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4:1466–1486. doi:10.1021/bm034247a

    Article  CAS  Google Scholar 

  5. Gomes ME, Reis RL (2004) Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering—part 1: available systems and their properties. Int Mater Rev 49:261–273. doi:10.1179/095066004225021918

    Article  CAS  Google Scholar 

  6. Gomes ME, Reis RL (2004) Biodegradable polymers and composites in biomedical applications: from catgut to tissue engineering—part 2: systems for temporary replacement and advanced tissue regeneration. Int Mater Rev 49:274–285. doi:10.1179/095066004225021927

    Article  CAS  Google Scholar 

  7. Teebken OE, Haverich A (2002) Tissue engineering of small diameter vascular grafts. Eur J Vasc Endovasc Surg 23:475–485. doi:10.1053/ejvs.2002.1654

    Article  Google Scholar 

  8. Behravesh E, Yasko AW, Engel PS, Mikos AG (1999) Synthetic biodegradable polymers for orthopaedic applications. Clin Orthop Relat Res 367:118–129

    Article  Google Scholar 

  9. Langer R (1990) New methods of drug delivery. Science 249:1527–1533

    Article  CAS  Google Scholar 

  10. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346. doi:10.1016/S0142-9612(00)00101-0

    Article  CAS  Google Scholar 

  11. Nabid MR, Tabatabaei SJ, Sedghi R et al (2011) Self-assembled micelles of well-defined pentaerythritol-centered amphiphilic A4B8 star-block copolymers based on PCL and PEG for hydrophobic drug delivery. Polymer 52:2799–2809. doi:10.1016/j.polymer.2011.04.054

    Article  CAS  Google Scholar 

  12. Gadda T, Kylma J, Tuominen J et al (2006) Poly(ε-caprolactone)-grafted acetylated anhydroglucose oligomer by ring-opening polymerization—synthesis and characterization. J Appl Polym Sci 100:1633–1641. doi:10.1002/app.23697

    Article  CAS  Google Scholar 

  13. Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27:87–133. doi:10.1016/S0079-6700(01)00039-9

    Article  CAS  Google Scholar 

  14. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798. doi:10.1016/j.progpolymsci.2007.05.017

    Article  CAS  Google Scholar 

  15. Stavridi M, Katsikogianni M, Missirlis YF (2003) The influence of surface patterning and/or sterilization on the haemocompatibility of polycaprolactones. Mater Sci Eng C 23:359–365. doi:10.1016/S0928-4931(02)00287-4

    Article  Google Scholar 

  16. Ng KW, Hutmacher DW, Schantz JT et al (2001) Evaluation of ultra-thin poly(ε-caprolactone) films for tissue-engineered skin. Tissue Eng 7:441–455. doi:10.1089/10763270152436490

    Article  CAS  Google Scholar 

  17. Engelberg I, Kohn J (1991) Physicomechanical properties of degradable polymers used in medical applications—a comparative study. Biomaterials 12:292–304. doi:10.1016/0142-9612(91)90037-B

    Article  CAS  Google Scholar 

  18. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256. doi:10.1016/j.progpolymsci.2010.04.002

    Article  CAS  Google Scholar 

  19. Petrova S, Riva R, Jérôme C et al (2009) Controlled synthesis of AB2 amphiphilic triarm star-shaped block copolymers by ring-opening polymerization. Eur Polym J 45:3442–3450. doi:10.1016/j.eurpolymj.2009.09.009

    Article  CAS  Google Scholar 

  20. Theiler S, Mela P, Diamantouros SE et al (2011) Fabrication of highly porous scaffolds for tissue engineering based on star-shaped functional poly(ε-caprolactone). Biotechnol Bioeng 108:694–703. doi:10.1002/bit.22979

    Article  CAS  Google Scholar 

  21. Cui Y, Ma X, Tang X, Luo Y (2004) Synthesis, characterization, and thermal stability of star-shaped poly(ε-caprolactone) with phosphazene core. Eur Polym J 40:299–305. doi:10.1016/j.eurpolymj.2003.09.024

    Article  CAS  Google Scholar 

  22. Purnama P, Jung Y, Kim SH (2013) Melt stability of 8-arms star-shaped stereocomplex polylactide with three-dimensional core structures. Polym Degrad Stabil 98:1097–1101. doi:10.1016/j.polymdegradstab.2013.02.010

    Article  CAS  Google Scholar 

  23. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12:1197–1211. doi:10.1089/ten.2006.12.1197

    Article  CAS  Google Scholar 

  24. Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135–1138. doi:10.1126/science.1106587

    Article  CAS  Google Scholar 

  25. Kim HN, Jiao A, Hwang NS et al (2013) Nanotopography-guided tissue engineering and regenerative medicine. Adv Drug Deliv Rev 65:536–558. doi:10.1016/j.addr.2012.07.014

    Article  CAS  Google Scholar 

  26. Dahlin RL, Kurtis Kasper BSF, Mikos AG (2011) Polymeric nanofibers in tissue engineering. Tissue Eng Part B 17:349–364. doi:10.1089/ten.teb.2011.0238

    Article  CAS  Google Scholar 

  27. Hess C, Hirt P, Opperman W (1999) Influence of branching on the properties of poly(ethylene terephthalate) fibers. J Appl Polym Sci 74:728–734. doi:10.1002/(SICI)1097-4628(19991017)74:3<728::AID-APP27>3.0.CO;2-X

    Article  CAS  Google Scholar 

  28. Shan H, White JL (2004) Structure development in melt spinning of poly(ethylene-co-octene) filaments with various comonomer contents. J Appl Polym Sci 93:9–22. doi:10.1002/app.20333

    Article  CAS  Google Scholar 

  29. McKee MG, Wilkes GL, Colby RH, Long TE (2004) Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Macromolecules 37:1760–1767. doi:10.1021/ma035689h

    Article  CAS  Google Scholar 

  30. McKee MG, Park T, Unal S, Yilgor I, Long TE (2005) Electrospinning of linear and highly branched segmented poly(urethane urea)s. Polymer 46:2011–2015. doi:10.1016/j.polymer.2005.01.028

    Article  CAS  Google Scholar 

  31. Puppi P, Detta N, Piras AM et al (2010) Development of electrospun three-arm star poly(ε-caprolactone) meshes for tissue engineering applications. Macromol Biosci 10:887–897. doi:10.1002/mabi.200900422

    Article  CAS  Google Scholar 

  32. Breads JL, Silbey R (1991) Conjugated polymers. Kluwer, Amsterdam

    Book  Google Scholar 

  33. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M et al (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regen Med 5:e17–e35. doi:10.1002/term.383

    Article  CAS  Google Scholar 

  34. Subramanian A, Krishnan UM, Sethuraman S (2009) Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J Biomed Sci 16:108–118. doi:10.1186/1423-0127-16-108

    Article  Google Scholar 

  35. Wu JC (2009) Studies of electrically conducting polymers and biodegradable polymers for bone tissue engineering. The Ohio State University

  36. Pomfret SJ, Adams PN, Comfort NP et al (2000) Electrical and mechanical properties of polyaniline fibres produced by a one-step wet spinning. Polymer 41:2265–2269. doi:10.1016/S0032-3861(99)00365-1

    Article  CAS  Google Scholar 

  37. McKeon KD, Lewis A, Freeman JW (2010) Electrospun poly(D,L-lactide) and polyaniline scaffold characterization. J Appl Polym Sci 115:1566–1572. doi:10.1002/app.31296

    Article  CAS  Google Scholar 

  38. Ju YW, Park JH, Jung HR et al (2007) Electrochemical properties of polypyrrole/sulfonated SEBS composite nanofibers prepared by electrospinning. Electrochim Acta 52:4841–4847. doi:10.1016/j.electacta.2007.01.028

    Article  CAS  Google Scholar 

  39. Chiang JC, MacDiarmid AG (1986) Polyaniline: protonic acid doping of the emeraldine form to the metallic regime. Synth Met 13:193–205. doi:10.1016/0379-6779(86)90070-6

    Article  CAS  Google Scholar 

  40. Mattoso LHC, MacDiarmid AG, Epstein AJ (1994) Controlled synthesis of high molecular weight polyaniline and poly(o-methoxyaniline). Synth Met 68:1–11. doi:10.1016/0379-6779(94)90140-6

    Article  CAS  Google Scholar 

  41. Laughlin PJ (1996) The effect of uniaxial orientation upon the structural properties of polvaniline films. Durham E-Theses, Durham

    Google Scholar 

  42. Mishra V, Kumar R (2011) Synthesis and characterization of five-arms star polymer of N-vinyl pyrrolidone through ATRP based on glucose. Carbohyd Polym 83:1534–1540. doi:10.1016/j.carbpol.2010.10.004

    Article  CAS  Google Scholar 

  43. Zhu J, Wang WT, Wang XL, Li B, Wang YZ (2009) Green synthesis of a novel biodegradable copolymer base on cellulose and poly(p-dioxanone) in ionic liquid. Carbohyd Polym 76:139–144. doi:10.1016/j.carbpol.2008.10.004

    Article  CAS  Google Scholar 

  44. Guo B, Finne-Wistrand A, Albertsson AC (2010) Enhanced electrical conductivity by macromolecular architecture: hyperbranched electroactive and degradable block copolymers based on poly(ε-caprolactone) and aniline pentamer. Macromolecules 43:4472–4480. doi:10.1021/ma100530k

    Article  CAS  Google Scholar 

  45. Osaheni JA, Jenekhe SA, Vanherzeele H, Meth JS, Sun Y, MacDiarmid AG (1992) Nonlinear optical properties of polyanilines and derivatives. J Phys Chem 96:2830–2836. doi:10.1021/j100186a010

    Article  CAS  Google Scholar 

  46. Hwang GW, Wu KY, Hua MY, Lee HT, Chen SA (1998) Structure and properties of the soluble polyanilines, N-alkylated emeraldine bases. Synth Met 92:39–46. doi:10.1016/S0379-6779(98)80020-9

    Article  CAS  Google Scholar 

  47. Dan A, Sengupta PK (2007) Preparation and characterization of soluble polyaniline. J Appl Polym Sci 106:2675–2682. doi:10.1002/app.26909

    Article  CAS  Google Scholar 

  48. Cui W, Li X, Zhou S, Weng J (2007) Investigation on process parameters of electrospinning system through orthogonal experimental design. J Appl Polym Sci 103:3105–3112. doi:10.1002/app.25464

    Article  CAS  Google Scholar 

  49. Deitzel JM, Kleinmeyer J, Harris D, Tan NCB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272. doi:10.1016/S0032-3861(00)00250-0

    Article  CAS  Google Scholar 

  50. Zong X, Kim K, Fang D et al (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43:4403–4412. doi:10.1016/S0032-3861(02)00275-6

    Article  CAS  Google Scholar 

  51. Zhang C, Yuan X, Wu L, Han Y, Sheng J (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J 41:423–432. doi:10.1016/j.eurpolymj.2004.10.027

    Article  CAS  Google Scholar 

  52. Yuan XY, Zhang YY, Dong CH, Sheng J (2004) Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym Int 53:1704–1710. doi:10.1002/pi.1538

    Article  CAS  Google Scholar 

  53. Gupta P, Elkins C, Long TE, Wilkes GL (2005) Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46:4799–4810. doi:10.1016/j.polymer.2005.04.021

    Article  CAS  Google Scholar 

  54. Jarusuwannapoom T, Hongroijanawiwat W, Jitjaicham S et al (2005) Effect of solvents on electro-spinnability of polystyrene solution and morphological appearance of resulting electrospun polystyrene fibers. Eur Polym J 41:409–421. doi:10.1016/j.eurpolymj.2004.10.010

    Article  CAS  Google Scholar 

  55. Lee JS, Choi KH, Ghim D et al (2004) Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. J Appl Polym Sci 93:1638–1646. doi:10.1002/app.20602

    Article  CAS  Google Scholar 

  56. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M et al (2009) Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng A 15:3605–3619. doi:10.1089/ten.tea.2008.0689

    Article  CAS  Google Scholar 

  57. Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27:2705–2715. doi:10.1016/j.biomaterials.2005.11.037

    Article  CAS  Google Scholar 

  58. Shin YJ, Kim SH, Yang DH et al (2010) Amperometric glucose biosensor by means of electrostatic layer-by-layer adsorption onto polyaniline-coated polyester films. J Ind Eng Chem 16:380–384. doi:10.1016/j.jiec.2009.09.066

    Article  CAS  Google Scholar 

  59. Kim MS, Seo KS, Khang G, Lee HB (2005) Ring-opening polymerization of e-caprolactone by poly(ethylene glycol) by an activated monomer mechanism. Macromol Rapid Commun 26:643–648. doi:10.1002/marc.200400650

    Article  CAS  Google Scholar 

  60. Kricheldorf HR, Thießen HH (2005) Telechelic polylactones functionalized with trimethoxysilyl groups. Polymer 46:12103–12108. doi:10.1016/j.polymer.2005.04.109

    Article  CAS  Google Scholar 

  61. Bartolozzi I, Cometa S, Errico C, Chiellini F, Chiellini E (2011) Multiblock polyurethanes based on biodegradable amphiphilic poly(ε-caprolactone)/poly(ethylene glycol) segments as candidates for tissue engineering applications. Nano Biomed Eng 3:86–94. doi:10.5101/nbe.v3i2.p86-94

    Google Scholar 

  62. McKee MG (2005) The influence of branching and intermolecular interactions on the formation of electrospun fibers. Faculty of the Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  63. Puppi D, Dinucci D, Bartoli C et al (2011) Development of 3D wet-spun polymeric scaffolds loaded with antimicrobial agents for bone engineering. J Bioact Compat Polym 26:478–492. doi:10.1177/0883911511415918

    Article  CAS  Google Scholar 

  64. Goldberg M, Langer R, Jia X (2007) Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 18:241–268. doi:10.1163/156856207779996931

    Article  CAS  Google Scholar 

  65. Gazzarri M, Bartoli C, Mota C et al (2013) Fibrous star poly(ε-caprolactone) melt-electrospun scaffolds for wound healing applications. J Bioact Compat Polym 28:492–507. doi:10.1177/0883911513494625

    Article  CAS  Google Scholar 

  66. Bidez PR, Li SX, Macdiarmid AG et al (2006) Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J Biomater Sci Polym Ed 17:199–212. doi:10.1163/156856206774879180

    Article  CAS  Google Scholar 

  67. Mota C, Puppi D, Dinucci D et al (2013) Additive manufacturing of star poly(ε-caprolactone) wet-spun scaffolds for bone tissue engineering applications. J Bioact Compat Polym 28:320–340. doi:10.1177/0883911513490341

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Iran National Science Foundation (INSF) for the financial support of project 91060696.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Karimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shadi, L., Karimi, M. & Entezami, A.A. Preparation of electroactive nanofibers of star-shaped polycaprolactone/polyaniline blends. Colloid Polym Sci 293, 481–491 (2015). https://doi.org/10.1007/s00396-014-3430-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3430-6

Keywords

Navigation