Skip to main content
Log in

Largely enhanced molecular orientation and mechanical property of injection-molded high-density polyethylene parts via the synergistic effect of polyamide 6 in situ microfibrillar and intense shear flow

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The high-density polyethylene (HDPE)/polyamide 6 (PA6) in situ microfibrillar composites (HAM-C) were fabricated by the “extrusion-hot stretch-quenching” technique, in which PA6 microfibrillar had diameters lying in the range 0.55 to 1.05 μm. Then the HAM-C and pure HDPE were processed by multi-melt multi-injection molding (MMMIM). The effect of PA6 in situ microfibrillar and secondary melt penetration on the crystalline morphologies and mechanical properties was investigated using a variety of characterization techniques including differential scanning calorimetry (DSC), rheological experiments, scanning electron microscopy (SEM), synchrotron two-dimensional small-angle X-ray scattering (SAXS), and tensile testing. It was found that PA6 microfibrillar not only acted as a heterogeneous nucleation agent, but also prolonged the relaxation time of HDPE matrix by suppressing the mobility of HDPE molecular chains. It was revealed, from observing the morphologies, that the presence of PA6 microfibrillar not only facilitated the formation of transcrystalline superstructures on its surface, but also induced much more oriented crystals nearby as a result of the amplified local shear field. Furthermore, SAXS results confirmed that the degree of orientation of the injection-molded HAM-C part (HAM-M) was largely enhanced. Finally, the tensile testing showed that the tensile strength and Young’s modulus of the HAM-M sample were enhanced by 38.8 and 54.6 %, respectively, when compared with pure HDPE parts. This work provides a promising way to tailor the crystalline structure of the injection-molded parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fatou J, Vasile C, Seymour R (1993) Handbook of polyolefins, synthesis and properties. Marcel Dekker, New York

    Google Scholar 

  2. Simis KS, Bistolfi A, Bellare A, Pruitt LA (2006) The combined effects of crosslinking and high crystallinity on the microstructural and mechanical properties of ultra high molecular weight polyethylene. Biomaterials 27:1688–1694

    Article  CAS  Google Scholar 

  3. Hu J, Wang ZW, Yan SM, Gao XQ, Deng C, Zhang J, Shen KZ (2012) The morphology and tensile strength of high density polyethylene/nano-calcium carbonate composites prepared by dynamic packing injection molding. Polym Plast Technol 51:1127–1132

    Article  CAS  Google Scholar 

  4. Yang HR, Lei J, Li L, Fu Q, Li ZM (2012) Formation of interlinked shish-kebabs in injection-molded polyethylene under the coexistence of lightly cross-linked chain network and oscillation shear flow. Macromolecules 45:6600–6610

    Article  CAS  Google Scholar 

  5. Lin X, Caton-Rose F, Ren D, Wang K, Coates P (2013) Shear-induced crystallization morphology and mechanical property of high density polyethylene in micro-injection molding. J Polym Res 20:1–12

    Google Scholar 

  6. Han W, Zheng G, Liang Y, Dai K, Liu C, Chen J, Shen C, Peng X, Fu P, Cao W (2011) HDPE solution crystallization induced by electrospun PA66 nanofiber. Colloid Polym Sci 289:843–848

    Article  CAS  Google Scholar 

  7. Wang L, Yang B, Sun N, Zhang K, Feng JM, Yang MB (2012) Role of gas delay time on the hierarchical crystalline structure and mechanical property of HDPE molded by gas-assisted injection molding. Colloid Polym Sci 290:1133–1144

    Article  CAS  Google Scholar 

  8. Zhang K, Liu Z, Yang B, Yang W, Lu Y, Wang L, Sun N, Yang M (2011) Cylindritic structures of high-density polyethylene molded by multi-melt multi-injection molding. Polymer 52:3871–3878

    Article  CAS  Google Scholar 

  9. Wang L, Yang B, Yang W, Sun N, Yin B, Feng JM, Yang MB (2011) Morphology and mechanical property of high-density polyethylene parts prepared by gas-assisted injection molding. Colloid Polym Sci 289:1661–1671

    Article  CAS  Google Scholar 

  10. Wang L, Wang JH, Yang B, Wang Y, Zhang QP, Yang MB, Feng JM (2013) A novel hierarchical crystalline structure of injection-molded bars of linear polymer: Co-existence of bending and normal shish–kebab structure. Colloid Polym Sci 291:1503–1511

    Article  CAS  Google Scholar 

  11. Feng J, Wang L, Zhang RY, Wu JJ, Wang CY, Yang MB, Fu XR (2014) Formation of double skin-core orientated structure in injection-molded Polyethylene parts: Effects of ultra-high molecular weight Polyethylene and temperature field. J Polym Res 21:1–14

    Google Scholar 

  12. Kalay G, Sousa RA, Reis RL, Cunha AM, Bevis MJ (1999) The enhancement of the mechanical properties of a high–density polyethylene. J Appl Polym Sci 73:2473–2483

    Article  CAS  Google Scholar 

  13. Schrauwen B, Breemen LV, Spoelstra A, Govaert L, Peters G, Meijer H (2004) Structure, deformation, and failure of flow-oriented semicrystalline polymers. Macromolecules 37:8618–8633

    Article  CAS  Google Scholar 

  14. Kubáut J, Månson JA, Rigdahl M (1983) Influence of mold design on the mechanical properties of high–pressure injection—Molded polyethylene. Polym Eng Sci 23:877–882

    Article  Google Scholar 

  15. Lei J, Jiang C, Shen K (2004) Biaxially self–reinforced high–density polyethylene prepared by dynamic packing injection molding. I. Processing parameters and mechanical properties. J Appl Polym Sci 93:1584–1590

    Article  CAS  Google Scholar 

  16. Mai F, Wang K, Yao M, Deng H, Chen F, Fu Q (2010) Superior reinforcement in melt-spun polyethylene/multiwalled carbon nanotube fiber through formation of a shish-kebab structure. J Phy Chem B 114:10693–10702

    Article  CAS  Google Scholar 

  17. Zhong GJ, Li L, Mendes E, Byelov D, Fu Q, Li ZM (2006) Suppression of skin-core structure in injection-molded polymer parts by in situ incorporation of a microfibrillar network. Macromolecules 39:6771–6775

    Article  CAS  Google Scholar 

  18. Li ZM, Li LB, Shen KZ, Yang W, Huang R, Yang MB (2004) Transcrystalline morphology of an in situ microfibrillar poly (ethylene terephthalate)/poly (propylene) blend fabricated through a slit extrusion hot stretching–quenching process. Macromol Rap Commun 25:553–558

    Article  Google Scholar 

  19. Yi X, Chen C, Zhong GJ, Xu L, Tang JH, Ji X, Hsiao BS, Li ZM (2011) Suppressing the skin–core structure of injection-molded isotactic polypropylene via combination of an in situ microfibrillar network and an interfacial compatibilizer. J Phy Chem B 115:7497–7504

    Article  CAS  Google Scholar 

  20. Zhong GJ, Li ZM, Li LB, Mendes E (2007) Crystalline morphology of isotactic polypropylene (iPP) in injection molded poly (ethylene terephthalate) (PET)/iPP microfibrillar blends. Polymer 48:1729–1740

    Article  CAS  Google Scholar 

  21. Wu TM, Liao CS (2000) Polymorphism in nylon 6/clay nanocomposites. Macromol Chem Phys 201:2820–2825

    Article  CAS  Google Scholar 

  22. Murase S, Inoue A, Miyashita Y, Kimura N, Nishio Y (2002) Structural characteristics and moisture sorption behavior of nylon–6/clay hybrid films. J Polym Sci B: Polym Phy 40:479–487

    Article  CAS  Google Scholar 

  23. Phang IY, Ma J, Shen L, Liu T, Zhang WD (2006) Crystallization and melting behavior of multi–walled carbon nanotube–reinforced nylon–6 composites. Polym Int 55:71–79

    Article  CAS  Google Scholar 

  24. Serpe G, Jarrin J, Dawans F (1990) Morphology–processing relationships in polyethylene–polyamide blends. Polym Eng Sci 30:553–565

    Article  CAS  Google Scholar 

  25. La Mantia FP, Valenza A (1989) Mechanical properties-structure relationships for immiscible blends of low density polyethylene with nylon-6. Eur Polym J 25:553–556

    Article  Google Scholar 

  26. Utracki L, Dumoulin MM, Toma P (1986) Melt rheology of high density polyethylene/polyamide–6 blends. Polym Eng Sci 26:34–44

    Article  CAS  Google Scholar 

  27. Dencheva NV, Oliveira MJ, Pouzada AS, Kearns MP, Denchev ZZ (2011) Mechanical properties of polyamide 6 reinforced microfibrilar composites. Polym Composite 32:407–417

    Article  CAS  Google Scholar 

  28. Dencheva N, Nunes T, Oliveira MJ, Denchev Z (2005) Microfibrillar composites based on polyamide/polyethylene blends. 1. Structure investigations in oriented and isotropic polyamide 6. Polymer 46:887–901

    Article  CAS  Google Scholar 

  29. Arvidson SA, Khan SA, Gorga RE (2010) Mesomorphic−α-monoclinic phase transition in isotactic polypropylene: a study of processing effects on structure and mechanical properties. Macromolecules 43:2916–2924

    Article  CAS  Google Scholar 

  30. Olley R, Bassett D (1982) An improved permanganic etchant for polyolefines. Polymer 23:1707–1710

    Article  CAS  Google Scholar 

  31. Dencheva N, Oliveira MJ, Carneiro OS, Pouzada AS, Denchev Z (2010) Preparation, structural development, and mechanical properties of microfibrillar composite materials based on polyethylene/polyamide 6 oriented blends. J Appl Polym Sci 115:2918–2932

    Article  CAS  Google Scholar 

  32. Li ZM, Li L, Shen KZ, Yang MB, Huang R (2005) In situ poly (ethylene terephthalate) microfibers-and shear-induced non-isothermal crystallization of isotactic polypropylene by on-line small angle X-ray scattering. Polymer 46:5358–5367

    Article  CAS  Google Scholar 

  33. Lagasse R, Maxwell B (1976) An experimental study of the kinetics of polymer crystallization during shear flow. Polym Eng Sci 16:189–199

    Article  CAS  Google Scholar 

  34. Xu HS, Li ZM, Yang S, Pan JL, Yang W, Yang MB (2005) Rheological behavior comparison between PET/HDPE and PC/HDPE microfibrillar blends. Polym Eng Sci 45:1231–1238

    Article  CAS  Google Scholar 

  35. Xu JZ, Chen C, Wang Y, Tang H, Li ZM, Hsiao BS (2011) Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites. Macromolecules 44:2808–2818

    Article  CAS  Google Scholar 

  36. Yalcin B, Valladares D, Cakmak M (2003) Amplification effect of platelet type nanoparticles on the orientation behavior of injection molded nylon 6 composites. Polymer 44:6913–6925

    Article  CAS  Google Scholar 

  37. Somani RH, Hsiao BS, Nogales A, Srinivas S, Tsou AH, Sics I, Balta-Calleja FJ, Ezquerra TA (2000) Structure development during shear flow-induced crystallization of i-PP: in-situ small-angle X-ray scattering study. Macromolecules 33:9385–9394

    Article  CAS  Google Scholar 

  38. Elmoumni A, Winter HH, Waddon AJ, Fruitwala H (2003) Correlation of material and processing time scales with structure development in isotactic polypropylene crystallization. Macromolecules 36:6453–6461

    Article  CAS  Google Scholar 

  39. Hermans P, Platzek P Kolloid Z 1939, 88, 68. CrossRef, CAS

  40. Fuchs C, Bhattacharyya D, Fakirov S (2006) Microfibril reinforced polymer–polymer composites: Application of Tsai-Hill equation to PP/PET composites. Compos Sci Technol 66:3161–3171

    Article  CAS  Google Scholar 

  41. Yi X, Xu L, Wang YL, Zhong GJ, Ji X, Li ZM (2010) Morphology and properties of isotactic polypropylene/poly (ethylene terephthalate) in situ microfibrillar reinforced blends: Influence of viscosity ratio. Eur Polym J 46:719–730

    Article  CAS  Google Scholar 

  42. Cheng L, Wang W, Wang J, Cao Y, Li G, Shen Y (2013) Morphological structure and mechanical properties of In situ microfibrillar composites of modified PA66 with PP. J Appl Polym Sci 127:4044–4051

    Article  CAS  Google Scholar 

  43. Pesneau I, Kadi AA, Bousmina M, Cassagnau P, Michel A (2002) From polymer blends to in situ polymer/polymer composites: morphology control and mechanical properties. Polym Eng Sci 42:1990–2004

    Article  CAS  Google Scholar 

  44. Xu H, Liu CY, Chen C, Hsiao BS, Zhong GJ, Li ZM (2012) Easy alignment and effective nucleation activity of ramie fibers in injection–molded poly (lactic acid) biocomposites. Biopolymers 97:825–839

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No. 20874066, 51033003, and 51121001). Particularly, we would also like to express our great thanks to Mr. Chao-liang Zhang for the assistance of SEM observations. The 2D SAXS experiments were kindly performed at the Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Bo Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(GIF 162 kb)

High resolution image (TIFF 6233 kb)

ESM 2

(GIF 89 kb)

High resolution image (TIFF 3146 kb)

ESM 3

(GIF 33 kb)

High resolution image (TIFF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Zhang, RY., Wu, JJ. et al. Largely enhanced molecular orientation and mechanical property of injection-molded high-density polyethylene parts via the synergistic effect of polyamide 6 in situ microfibrillar and intense shear flow. Colloid Polym Sci 292, 3033–3044 (2014). https://doi.org/10.1007/s00396-014-3341-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-014-3341-6

Keywords

Navigation