Skip to main content
Log in

A facile approach to the fabrication of graphene-based nanocomposites by latex mixing and in situ reduction

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Graphene-based polystyrene (PS) nanocomposites were prepared by latex mixing, co-coagulation, and in situ reduction process. In the process, aqueous dispersion of graphene oxide (GO) was mixed with PS latex, which was then co-coagulated with sodium chloride to form stabilized particle suspension; subsequently, hydrazine hydrate was added to reduce GO in situ. This process could avoid the use of additional surfactant or ultrasonic power to stabilize graphene during reduction, thus is facile and energy saving. The preparation process and the resulting nanocomposites were characterized in detail. The results show that, after co-coagulation, GO nanosheets are isolated by PS nanospheres through π–π interaction, which prevents the restacking of graphene in the subsequent reduction process. Thus, a molecular-level dispersion of the graphene nanosheets in the PS matrix is achieved, which greatly improves the electrical conductivity and the mechanical properties of the nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183

    Article  CAS  Google Scholar 

  2. Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3:491

    Article  CAS  Google Scholar 

  3. Alexander A, Balandin, Suchismita G, Wenzhong B, Irene C, Desalegne T, Feng M, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902

    Article  Google Scholar 

  4. Liu K, Chen L, Chen Y, Wu J, Zhang W, Chen F, Fu Q (2011) Preparation of polyester/reduced graphene oxide composites via in situ melt polycondensation and simultaneous thermo-reduction of graphene oxide. J Mater Chem 21:8612

    Article  CAS  Google Scholar 

  5. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515

    Article  CAS  Google Scholar 

  6. Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441

    Article  CAS  Google Scholar 

  7. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101

    Article  CAS  Google Scholar 

  8. Patole AS, Patole SP, Kang H, Yoo J-B, Kim T-H, Ahn J-H (2010) A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. J Colloid Interface Sci 350:530

    Article  CAS  Google Scholar 

  9. Hu H, Wang X, Wang J, Wan L, Liu F, Zheng H, Chen R, Xu C (2010) Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484:247

    Article  CAS  Google Scholar 

  10. Fenoglio I, Tomatis M, Lison D, Muller J, Fonseca A, Nagy JB, Fubini B (2006) Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radical Bio Med 40:1227

    Article  CAS  Google Scholar 

  11. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem 16:155

    Article  CAS  Google Scholar 

  12. Tkalya E, Ghislandi M, Alekseev A, Koning C, Loos J (2010) Latex-based concept for the preparation of graphene-based polymer nanocomposites. J Mater Chem 20:3035

    Article  CAS  Google Scholar 

  13. Schaefer DW, Justice RS (2007) How nano are nanocomposites. Macromolecules 40:8501

    Article  CAS  Google Scholar 

  14. Yu J, Lu K, Sourty E, Grossiord N, Koning CE, Loos J (2007) Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology. Carbon 45:2897

    Article  CAS  Google Scholar 

  15. Zhan Y, Wu J, Xia H, Yan N, Fei G, Yuan G (2011) Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process. Macromol Mater Eng 296:590

    Article  CAS  Google Scholar 

  16. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  17. Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123:3838

    Article  CAS  Google Scholar 

  18. Song X, Yang Y, Liu J, Zhao H (2011) PS colloidal particles stabilized by graphene oxide. Langmuir 27:1186

    Article  CAS  Google Scholar 

  19. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276

    Article  CAS  Google Scholar 

  20. Shen J, Hu Y, Shi M, Lu X, Qin C, Li C, Ye M (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater 21:3514

    Article  CAS  Google Scholar 

  21. Rao CNR, Biswas K, Subrahmanyam KS, Govindaraj A (2009) Graphene, the new nanocarbon. J Mater Chem 19:2457

    Article  CAS  Google Scholar 

  22. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327

    Article  CAS  Google Scholar 

  23. Pham VH, Cuong TV, Dang TT, Hur SH, Kong B-S, Kim EJ, Shin EW, Chung JS (2011) Superior conductive polystyrene—chemically converted graphene nanocomposite. J Mater Chem 21:11312

    Article  CAS  Google Scholar 

  24. Xu J-Z, Chen T, Yang C-L, Li Z-M, Mao Y-M, Zeng B-Q, Hsiao BS (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43:5000

    Article  CAS  Google Scholar 

  25. Nielsen LE (1970) Generalized equation for the elastic moduli of composite materials. J Appl Phys 41:4626

    Article  Google Scholar 

  26. Tiwari RR, Khilar KC, Natarajan U (2008) New poly(phenylene oxide)/polystyrene blend nanocomposites with clay: intercalation, thermal and mechanical properties. J Appl Polym Sci 108:1818

    Article  CAS  Google Scholar 

  27. Mark D, Frogley DR, Daniel Wagner H (2003) Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos Sci Technol 63:1647

    Article  Google Scholar 

  28. Potts JR, Lee SH, Alam TM, An J, Stoller MD, Piner RD, Ruoff RS (2011) Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization. Carbon 49:2615

    Article  CAS  Google Scholar 

  29. Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S (2011) Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49:198

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Key Basic Research Program of China (grant no. 2011CB606000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinrong Wu or Guangsu Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Wu, S., Wu, J. et al. A facile approach to the fabrication of graphene-based nanocomposites by latex mixing and in situ reduction. Colloid Polym Sci 291, 2279–2287 (2013). https://doi.org/10.1007/s00396-013-2959-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-013-2959-0

Keywords

Navigation