Skip to main content
Log in

Structural and mechanical properties of composite hydrogels composed of clay and a polyelectrolyte prepared by mixing

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We investigated the structural, mechanical, and swelling properties of composite hydrogels consisting of clay, a dispersing agent (tetrasodium diphosphate), and sodium polyacrylate (PAAS) prepared by mixing. Regardless of the simple preparation method, the gel exhibits excellent properties such as mechanical toughness and high swelling ability. For production of the tough gels, it is important to disperse clay particles using the dispersing agent and to use high molecular weight PAAS for formation of bridge connecting different clay particles in a dispersed state. Synchrotron small-angle X-ray scattering experiments reveal that PAAS was adsorbed on the positively charged edge of the clay particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Calvert P (2009) Hydrogels for soft machines. Adv Mater 21:743–756

    Article  CAS  Google Scholar 

  2. Can V, Abdurrahmanoglu S, Okay O (2007) Unusual swelling behavior of polymer-clay nanocomposite hydrogels. Polymer 48:5016–5023

    Article  CAS  Google Scholar 

  3. Dijkstra M, Hansen JP, Madden PA (1995) Gelation of a clay colloid suspension. Phys Rev Lett 75:2236–2239

    Article  CAS  Google Scholar 

  4. Feigin LA, Svergun DI, Taylor GW (1987) Structure analysis by small-angle X-ray and neutron scattering. Plenum Press, New York

    Google Scholar 

  5. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  6. Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic, London

    Google Scholar 

  7. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15:1155–1158

    Article  CAS  Google Scholar 

  8. Haraguchi K, Farnworth R, Ohbayashi A, Takehisa T (2003) Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(N,N-dimethylacrylamide) and clay. Macromolecules 36:5732–5741

    Article  CAS  Google Scholar 

  9. Haraguchi K, Li HJ, Matsuda K, Takehisa T, Elliott E (2005) Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels. Macromolecules 38:3482–3490

    Article  CAS  Google Scholar 

  10. Haraguchi K, Takehisa T, Fan S (2002) Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules 35:10162–10171

    Article  CAS  Google Scholar 

  11. Heppenstall-Butler M, Butler MF (2003) Nonequilibrium behavior in the three-component system stearic acid-sodium stearate-water. Langmuir 19:10061–10072

    Article  CAS  Google Scholar 

  12. Kroon M, Vos WL, Wegdam GH (1998) Structure and formation of a gel of colloidal disks. Phys Rev E 57:1962–1970

    Article  CAS  Google Scholar 

  13. Nie JJ, Du BY, Oppermann W (2005) Swelling, elasticity, and spatial inhomogeneity of poly(N-isopropylacrylamide)/clay nanocomposite hydrogels. Macromolecules 38:5729–5736

    Article  CAS  Google Scholar 

  14. Okay O, Oppermann W (2007) Polyacrylamide-clay nanocomposite hydrogels: rheological and light scattering characterization. Macromolecules 40:3378–3387

    Article  CAS  Google Scholar 

  15. Pignon F, Magnin A, Piau JM, Cabane B, Lindner P, Diat O (1997) Yield stress thixotropic clay suspension: investigation of structure by light, neutron, and X-ray scattering. Phys Rev E 56:3281–3289

    Article  CAS  Google Scholar 

  16. Ren HY, Zhu M, Haraguchi K (2011) Characteristic swelling-deswelling of polymer/clay nanocomposite gels. Macromolecules 44:8516–8526

    Article  CAS  Google Scholar 

  17. Schweins R, Hollmann J, Huber K (2003) Dilute solution behaviour of sodium polyacrylate chains in aqueous NaCl solutions. Polymer 44:7131–7141

    Article  CAS  Google Scholar 

  18. Takeno H, Maehara A, Yamaguchi D, Koizumi S (2012) A structural study of an organogel investigated by small-angle neutron scattering and synchrotron small-angle X-ray scattering. J Phys Chem B 116:7739–7745

    Article  CAS  Google Scholar 

  19. Takeno H, Obuchi K, Maki Y, Kondo S, Dobashi T (2011) A structural study of polyelectrolyte gels in a unidirectionally swollen state. Polymer 52:2685–2692

    Article  CAS  Google Scholar 

  20. Treloar LRG (1975) The physics of rubber elasticity, 3rd edn. Clarendon, Oxford

    Google Scholar 

  21. Wang Q, Mynar JL, Yoshida M, Lee E, Lee M, Okuro K, Kinbara K, Aida T (2010) High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463:339–343

    Article  CAS  Google Scholar 

  22. Yin DW, Horkay F, de Douglas JF, Pablo JJ (2008) Molecular simulation of the swelling of polyelectrolyte gels by monovalent and divalent counterions. J Chem Phys 129:154902

    Article  Google Scholar 

Download references

Acknowledgments

The synchrotron SAXS measurements were conducted under the approval of Photon Factory Program Advisory Committee (Proposals 2010G699 and 2010G134).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Takeno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeno, H., Nakamura, W. Structural and mechanical properties of composite hydrogels composed of clay and a polyelectrolyte prepared by mixing. Colloid Polym Sci 291, 1393–1399 (2013). https://doi.org/10.1007/s00396-012-2871-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2871-z

Keywords

Navigation