Skip to main content
Log in

Generalizing the polymerization conditions for the production of monodisperse polymeric particles via dispersion polymerization

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, the preparation of various methacrylic particles with monodisperse size via dispersion polymerization in polar media was discussed. The effect of various polymerization conditions such as polarity of the medium, monomer, stabilizer, and initiator concentration, polymerization temperature, and initiator type on the size and size distribution of these particles was evaluated. The experimental results showed that, with a decrease in the difference between medium solubility parameter (MSP) and polymer solubility parameter (PSP), stabilizer concentration and with an increase in monomer content size of the particles increased and size distribution of them became broader. The obtained results showed that the particle size and size distribution of various polymers were different functions of initiator concentration. It means that, for the production of monodisperse particles, specific amount of initiator is needed for each type of the polymers. Moreover, it was observed that the size and size distribution of the particles with higher polarity were more sensitive to changing the polarity of the medium, and the size distribution of the particles with lower glass transition temperature (T g) is more sensitive to changing the stabilizer concentration which is because of less stability of them. Furthermore, to our surprise, the obtained results showed that, in MSP-PSP of 18.5 MPa0.5, size and size distribution of all types of the particles became equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Huang H, Liu H (2010) J Polym Sci: Part A: Polym Chem 48:5198–5205

    Article  CAS  Google Scholar 

  2. Tolue S, Ghafelebashi SM, Moghbeli MR (2009) Eur Polym J 45:714–720

    Article  CAS  Google Scholar 

  3. Okubo M, Katsuta Y, Matsumoto T (1980) J Polym Sci Polym Lett Ed 18:481–486

    Article  CAS  Google Scholar 

  4. Ahmad H, Saito N, Kagawa Y, Okubo M (2008) Langmuir 24:688–691

    Article  CAS  Google Scholar 

  5. Hu YX, Ge JP, Zhang TR, Yin YD (2008) Adv Mater 20:4599–4602

    Article  CAS  Google Scholar 

  6. Champion JA, Katare YK, Mitragotri S (2007) Proc Natl Acad Sci USA 104:11901–11904

    Article  CAS  Google Scholar 

  7. Okubo M, Takekoh R, Suzuki A (2002) Colloid Polym Sci 280:1057–1061

    Article  CAS  Google Scholar 

  8. Hosseinzadeh S, Saadat Y, Abdolbaghi S (2012) Colloid Polym Sci 290:847–853

    Article  CAS  Google Scholar 

  9. Saadat Y, Hosseinzadeh S, Afshar-Taromi F, Eslami H (2012) Colloid Polym Sci 290:1099–1106

    Google Scholar 

  10. Mader C, Schnoll-Bitai I (2005) Macromol Chem Phys 206:649

    Article  CAS  Google Scholar 

  11. Smigol V, Svec F, Wang QC, Hosoya K, Frechet JM, Angew J (1992) Makromol Chem 195:151

    CAS  Google Scholar 

  12. Ugelstad J, Mork PC, Kaggerud KH, Ellingsen T, Berge A (1980) Adv Colloid Interface Sci 13:101

    Article  CAS  Google Scholar 

  13. Omi S, Saito M, Hashimoto T, Nagai M, Ma G (1998) J Appl Polym Sci 68:897

    Article  CAS  Google Scholar 

  14. Tseng CM, Lu YY, El-Aasser MS, Vanderhoff JW (1986) J Polym Sci Part A Polym Chem 24:2995–3007

    Article  CAS  Google Scholar 

  15. James Paine A, Luyems W, McNulty J (1990) Macromolecules 23:3104–3109

    Article  Google Scholar 

  16. Cao K, Jian Y, Bo-Geng L, Bao-Fang L, Zu-Ren P (2000) Chem Eng J 78:211–215

    Article  CAS  Google Scholar 

  17. Jiang S, Sudol ED, Dimonie VL, El-Aasser MS (2008) J Appl Polym Sci 108:4096–4107

    Article  CAS  Google Scholar 

  18. Jiang S, Sudol ED, Dimonie VL, El-Aasser MS (2008) J Appl Polym Sci 107:2453–2458

    Article  CAS  Google Scholar 

  19. Wang D, Dimonie VL, Sudol ED, El-Aasser MS (2002) J Appl Polym Sci 84:2721–2732

    Article  CAS  Google Scholar 

  20. James Paine A (1990) Macromolecules 23:3109–3117

    Article  Google Scholar 

  21. (1999) Polymer handbook, 4th edn. Wiley, New York

  22. Wang D, Dimonie VL, Sudol ED, El-Aasser MS (2002) J Appl Polym Sci 84:2692–2709

    Article  CAS  Google Scholar 

  23. Eslami H, Hosseinzadeh S, Saadat Y, Afshar-Taromi F, Rimaz M(2012) Colloid Polym Sci 290:1463–1469

    Google Scholar 

  24. Saadat Y, Hosseinzadeh S, Eslami H,Afshar-Taromi F (2012) Colloid Polym Sci 290:1333–1339

    Google Scholar 

  25. Hosseinzadeh S, Saadat Y, Eslami H, Afshar-Taromi F, Hosseinzadeh A, Rimaz M, Hooshangi V (2012) Colloid Polym Sci. doi:10.1007/s00396-012-2769-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Younes Saadat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saadat, Y., Hosseinzadeh, S., Afshar-Taromi, F. et al. Generalizing the polymerization conditions for the production of monodisperse polymeric particles via dispersion polymerization. Colloid Polym Sci 291, 937–944 (2013). https://doi.org/10.1007/s00396-012-2812-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2812-x

Keywords

Navigation