Skip to main content
Log in

Synthesis and surface active properties of a gemini-type surfactant linked by a quaternary ammonium group

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this study, cationic surfactants having multi-hydroxyl groups were synthesized by the condensation reaction of octadec-9-enyl glycidyl ether and methyl amine followed by the quaternization with dimethyl sulfate. The structure of the product was elucidated by 1H-NMR and FT-IR. The minimum critical micelle concentration (CMC) and surface tension achieved using C18:1-BHDM surfactant were 1.24 × 10−4 mol/L and 43.36 mN/m, respectively. The interfacial tensions measured between 1 wt% surfactant solution and n-decane were found to be in the same order of magnitude as those exhibited between micellar solutions and nonpolar hydrocarbon oils. The contact angle measurement result suggests that C18:1-BADM is the best wetting agent among the surfactants tested during this study. It has been observed that the results for foam stability measurement are consistent with those of CMC and contact angle. That is, the percentage of foam volume decrease has been observed to increase with an increase in number of hydroxyl group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Han L, Ye Z, Chen H, Luo P (2009) The interfacial tension between cationic gemini surfactant solution and crude oil. J Surfactant Deterg 12(3):185–190

    Article  CAS  Google Scholar 

  2. Sharma KS, Patil SR, Rakshit AK, Glenn K, Doiron M, Palepu RM, Hassan PA (2004) Self-aggregation of a cationic-nonionic surfactant mixture in aqueous media: tensiometric, conductometric, density, light scattering, potentiometric, and fluorometric studies. J Phys Chem B 108(34):12804–12812

    Article  CAS  Google Scholar 

  3. Lu T, Li Z, Huang J, Fu H (2008) Aqueous surfactant two-phase systems in a mixture of cationic gemini and anionic surfactants. Langmuir 24(19):10723–10728

    Article  CAS  Google Scholar 

  4. Prez L, Pinazo A, Infante MR, Pons R (2007) Investigation of the micellization process of single and gemini surfactants from arginine by SAXS, NMR self-diffusion, and light scattering. J Phys Chem B 111(40):11379–11387

    Article  Google Scholar 

  5. Souguir Z, Roudesli S, About-Jaudet E, Picton L, Cerf DL (2010) Novel cationic and amphiphilic pullulan derivatives II: pH dependant physicochemical properties. Carbohydr Polym 80(1):123–129

    Article  CAS  Google Scholar 

  6. Rosen MJ (1988) Surfactants and interfacial phenomena. Wiley, New York

    Google Scholar 

  7. Das D, Roy S, Mitra RN, Dasgupta A, Das PK (2005) Head-group size or hydrophilicity of surfactants: the major regulator of lipase activity in cationic water-in-oil microemulsions. Chem Eur J 11(17):4881–4889

    Article  CAS  Google Scholar 

  8. Zana R (2002) Dimeric (gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution. J Colloid Interface Sci 248(2):203–220

    Article  CAS  Google Scholar 

  9. Badawi AM, Mekawi MA, Mohamed AS, Mohamed MZ, Khowdairy MM (2007) Surface and biological activity of some novel cationic surfactants. J Surfactant Deterg 10(4):243–255

    Article  CAS  Google Scholar 

  10. Vinson PK, Bellare JR, Davis HT, MilleR WG, Scriven LE (1991) Direct imaging of surfactant micelles, vesicles, discs, and ripple phase structures by cryo-transmission electron microscopy. J Colloid Interface Sci 142(1):74–91

    Article  CAS  Google Scholar 

  11. Hirata H, Sato M, Sakaiguchi Y, Katsube Y (1988) Small angle X-ray scattering study of an extremely elongated micelle system of CTAB-p-toluidine solution. Colloid Polym Sci 266(9):862–864

    Article  CAS  Google Scholar 

  12. Jaeger DA, Li B, Clark T (1996) Cleavable double-chain surfactants with one cationic and one anionic head group that form vesicles. Langmuir 12(18):4314–4316

    Article  CAS  Google Scholar 

  13. Mohamed AS, Mohamed MZ (2010) Preparation of novel cationic surfactants from epichlorohydrin: their surface properties and biological activities. J Surfactant Deterg 13(2):159–163

    Article  CAS  Google Scholar 

  14. Shukla D, Tyagi VK (2006) Cationic gemini surfactants: a review. J Oleo Sci 55(8):381–390

    Article  CAS  Google Scholar 

  15. Parvinzadeh M, Memari N, Shaver M, Katozian B, Ahmadi S, Ziadi I (2010) Influence of ultrasonic waves on the processing of cotton with cationic softener. J Surfactant Deterg 13(2):135–141

    Article  CAS  Google Scholar 

  16. Jungermann E (1970) Cationic surfactants. Marcel Dekker, New York

    Google Scholar 

  17. Wang CY, Huang L (1987) pH-sensitive immunoliposomes mediate target-cell-specific delivery and controlled expression of a foreign gene in mouse. Proc Natl Acad Sci USA 84(15):7851–7855

    Article  CAS  Google Scholar 

  18. De la Maza A, Parra JL (1995) Solubilization of unilamellar liposomes caused by quaternary ammonium surfactants. J Control Release 37(1–2):33–42

    Article  Google Scholar 

  19. Bajpai D, Tyagi VK (2008) Microwave synthesis of cationic fatty imidazolines and their characterization. J Surfactant Deterg 11(1):79–87

    Article  CAS  Google Scholar 

  20. Cross J, Singer EJ (1994) Cationic surfactants. Marcel Dekker, New York

    Google Scholar 

  21. Giolando ST, Rapaport RA, Larson RJ, Federle TW, Stalmans M, Masscheleyn P (1995) Environmental fate and effects of DEEDMAC: a new rapidly biodegradable cationic surfactant for use in fabric softeners. Chemosphere 30(6):1067–1083

    Article  CAS  Google Scholar 

  22. Kirk O, Pedersen FD, Fuglsang CC (1998) Preparation and properties of a new type of carbohydrate-based cationic surfactant. J Surfactant Deterg 1(1):37–40

    Article  CAS  Google Scholar 

  23. Tatsumi T, Zhang W, Kida T, Nakatsuji Y, Ono D, Takeda T, IIkeda I (2000) Novel hydrolyzable and biodegradable cationic gemini surfactants: 1,3-bis[(acyloxyalkyl)-dimethylammonio]-2-hydroxypropane dichloride. J Surfactant Deterg 3(2):167–172

    Article  CAS  Google Scholar 

  24. Hellberg PE (2002) Ortho ester-based cleavable cationic surfactants. J Surfactant Deterg 5(3):217–227

    Article  CAS  Google Scholar 

  25. Miao Z, Yang J, Wang L, Liu Y, Zhang L, Li X, Peng L (2008) Synthesis of biodegradable lauric acid ester quaternary ammonium salt cationic surfactant and its utilization as calico softener. Mater Lett 62(19):3450–3452

    Article  CAS  Google Scholar 

  26. Kang EK, Lee BM, Hwang HA, Lim JC (2011) A novel cationic surfactant having two quaternary ammonium ions. J Ind Eng Chem 17(5–6):845–852

    CAS  Google Scholar 

  27. Lim JC, Kang EK, Lee BM (2012) Syntheses and surface active properties of cationic surfactants having multi ammonium and hydroxyl groups. J Ind Eng Chem. doi:10.1016/j.jiec.2012.01.040

  28. Lee BM, Kang HC, Park JM, Yoon J (2002) US Patent 6392064

  29. Park JM, Kim HC, Lee BM, Kim DP (2003) Efficient synthetic method of diepoxide compound containing amino group in the connecting part. J Korean Ind Eng Chem 14(2):249–252

    CAS  Google Scholar 

  30. Lim JC, Han DS (2011) Synthesis of dialkylamidoamine oxide surfactant and characterization of its dual function of detergency and softness. Colloid Surf A 389(1–3):166–174

    Article  CAS  Google Scholar 

  31. Kielman HS, Van Steen PHF (1979) Surface active agents. Society Chemical Industry, London

    Google Scholar 

  32. Miller CA, Neogi P (1985) Interfacial phenomena: equilibrium and dynamic effects. Marcel Dekker, New York

    Google Scholar 

  33. Kim TS, Kida T, Nakatsuji Y, Hirao T, Ikeda I (1996) Surface-active properties of novel cationic surfactants with two alkyl chains and two ammonium groups. JAOCS 73(7):907–911

    Article  CAS  Google Scholar 

  34. Chung DW, Lim JC (2009) Study on the effect of structure of polydimethylsiloxane grafted with polyethyleneoxide on surface activities. Colloids Surf A 336(1–3):35–40

    Article  CAS  Google Scholar 

  35. Mori F, Lim JC, Miller CA (1990) Equilibrium and dynamic behavior of a system containing a mixture of anionic and nonionic surfactants. Progr Colloid Polym Sci 82:114–121

    Article  CAS  Google Scholar 

  36. Mori F, Lim JC, Raney OG, Elsik CM, Miller CA (1989) Phase behavior, dynamic contacting and detergency in systems containing triolein and nonionic surfactants. Colloid Surf 40:323–345

    Article  CAS  Google Scholar 

  37. Miller CA (2008) Antifoaming in aqueous foams. Curr Opin Colloid Interface Sci 13(3):177–182

    Article  CAS  Google Scholar 

  38. Zhang H, Miller CA, Garrett PR, Raney KH (2005) Lauryl alcohol and amine oxide as foam stabilizers in the presence of hardness and oily soil. J Surfactant Deterg 8(1):99–107

    Article  CAS  Google Scholar 

  39. Kim JS, Lim JC (2009) Effect of pH on physical properties of triethanolamine-ester quaternary ammonium salt cationic surfactant system. J Korean Ind Eng Chem 20(5):479–485

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Korea Healthcare technology R&D Project, Ministry of Health and Welfare, Republic of Korea (grant no. A103017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to JongChoo Lim or Byung Min Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, J., Park, Jm., Park, C.J. et al. Synthesis and surface active properties of a gemini-type surfactant linked by a quaternary ammonium group. Colloid Polym Sci 291, 855–866 (2013). https://doi.org/10.1007/s00396-012-2802-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2802-z

Keywords

Navigation