Skip to main content
Log in

Synthesis and characterization of well-defined star PLLA with a POSS core and their microspheres for controlled release

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this paper, a series of hybrid star PLLA (sPLLA) with different arm lengths was synthesized via the hydrosilylation between octakis(dimethylsiloxy) silsesquioxane (Q8M8) and functionalized PLLA macromolecules with vinyl end groups (mPLLA). mPLLA was synthesized by ring-opening polymerization of l-lactide using 2-hydroxyethylmethacryl as an initiator in the presence of stannous 2-ethylhexanoate as a catalyst. The obtained sPLLA has low polydispersity with polydispersity index values from 1.29 to 1.30. The arm numbers of sPLLA vary from 5 to 7 and decrease with the increase in the length of the mPLLA arm due to the steric hindrance, which are estimated by 1H NMR analysis. The branched structure of sPLLA is also evidenced by the lower intrinsic viscosity when compared with the linear mPLLA with similar molecular weight. Both the glass transition temperatures (T g’s) and melting temperatures (T m’s) of sPLLAs are higher than those of the mPLLA arms. The incorporation of polyhedral oligomeric silsesquioxane (POSS) does not change the crystalline structure of PLLA, while the crystallinity of sPLLA is enhanced as the result that the POSS core acts as a heterogeneous nucleating agent in the matrix to promote the crystallization ability of PLLA. High-resolution transmission electron microscopy observation suggests that POSS disperses in the crystalline PLLA matrix as 5–20 nm aggregates. Microspheres of sPLLA with mean diameter 1 to 2 μm were prepared via emulsion solvent evaporation method. The sPLLA microspheres have higher loading capacity and encapsulation efficiency and lower drug release rate than mPLLA microspheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798. doi:10.1016/j.progpolymsci.2007.05.017

    Article  CAS  Google Scholar 

  2. Tian HY, Tang ZH, Zhuang XL, Chen XS, Jing XB (2011) Biodegradable synthetic polymers: preparation, functionalization and biomedical application. Prog Polym Sci 37(2):237–280. doi:10.1016/j.progpolymsci.2011.06.004

    Article  Google Scholar 

  3. Eastmond GC (2000) Poly (ε-caprolactone) blends. Adv Polym Sci 149:59–223. doi:10.1007/3-540-48838-3_2

    Article  Google Scholar 

  4. Rasal RM, Janorkar AV, Douglas EH (2010) Poly(lactic acid) modifications. Prog Polym Sci 35(3):338–356. doi:10.1016/j.progpolymsci.2009.12.003

    Article  CAS  Google Scholar 

  5. Albertsson AC, Varma IK, Lochab B, Anna FW, Kumar K (2010) Design and synthesis of different types of poly(lactic acid). In: Auras R, Lim LT, Susan EM, Tsuji H (eds) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, Hoboken, pp 43–58

    Chapter  Google Scholar 

  6. Hadjichristidis N (1999) Synthesis of miktoarm star (μ-star) polymers. J Polym Sci A Polym Chem 37(7):857–871. doi:10.1002/(SICI)1099-0518(19990401

    Article  CAS  Google Scholar 

  7. Inoue K (2000) Functional dendrimers, hyperbranched and star polymers. Prog Polym Sci 25(4):453–571. doi:10.1016/S0079-6700(00)00011-3

    Article  CAS  Google Scholar 

  8. Roovers J, Zhou LL, Toporowski PM, Zwan M, Iatrou H, Hadjichristidis N (1993) Regular star polymers with 64 and 128 arms. Models for polymeric micelles. Macromolecules 26(16):4324–4331. doi:10.1021/ma00068a039

    Article  CAS  Google Scholar 

  9. Morton M, Helminiak TE, Gadkary SD, Bueche F (1962) Preparation and properties of monodisperse branched polystyrene. J Polym Sci 57(165):471–482. doi:10.1002/pol.1962.1205716537

    Article  CAS  Google Scholar 

  10. Bosman AW, Heumann A, Klaerner G, Benoit D, Frechet JMJ, Hawker CJ (2001) High-throughput synthesis of nanoscale materials: structural optimization of functionalized one-Step star polymers. J Am Chem Soc 123(26):6461–6462. doi:10.1021/ja010405z

    Article  CAS  Google Scholar 

  11. Matyjaszewski K, Miller PJ, Pyun J, Kickelbick G, Diamanti S (1999) Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic/organic multifunctional initiators. Macromolecules 32(20):6526–6535. doi:10.1021/ma9904823

    Article  CAS  Google Scholar 

  12. Yan DY, Zhou ZP, Müller AHE (1999) Molecular weight distribution of hyperbranched polymers generated by self-condensing vinyl polymerization in presence of a multifunctional initiator. Macromolecules 32:245–250. doi:10.1021/ma9716488

    Article  CAS  Google Scholar 

  13. Bywater S (1979) Preparation and properties of star-branched polymers. Adv Polym Sci 30:89–116. doi:10.1007/3-540-09199-8_2

    Article  CAS  Google Scholar 

  14. MarsalkÓ TM, Majoros I, Kennedy JP (1997) Multi-arm star polyisobutylenes. V. Characterization of multi-arm polyisobutylene stars by viscometry, four points, electron microscopy, and ultrasonic shear degradation. Pure Appl Chem A34(5):775–792. doi:10.1080/10601329708014330

    Google Scholar 

  15. Gao H, Matyjaszewski K (2006) Synthesis of star polymers by a combination of ATRP and the “click” coupling method. Macromolecules 39(15):4960–4965. doi:10.1021/ma060926c

    Article  CAS  Google Scholar 

  16. Gao H, Min K, Matyjaszewski K (2007) Synthesis of 3-Arm star block copolymers by combination of “core-first” and “coupling-onto” methods using ATRP and click reactions. Macromol Chem Phys 208(13):1370–1378. doi:10.1002/macp.200600616

    Article  CAS  Google Scholar 

  17. Gao H, Matyjaszewski K (2009) Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels. Prog Polym Sci 34(4):317–350. doi:10.1016/j.progpolymsci.2009.01.001

    Article  CAS  Google Scholar 

  18. Inglis AJ, Sinnwell S, Davis TP, Barner-Kowollik C, Stenzel MH (2008) Reversible addition fragmentation chain transfer (RAFT) and hetero-Diels-Alder chemistry as a convenient conjugation tool for access to complex macromolecular designs. Macromolecules 41(12):4120–4126. doi:0.1021/ma8002328

    Article  CAS  Google Scholar 

  19. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021. doi:10.1002/1521-3773(20010601

    Article  CAS  Google Scholar 

  20. Sumerlin BS, Tsarevsky NV, Louche G, Lee RY, Matyjaszewski K (2005) Highly efficient “click” functionalization of poly(3-azidopropyl methacrylate) prepared by ATRP. Macromolecules 38(18):7540–7545. doi:10.1021/ma0511245

    Article  CAS  Google Scholar 

  21. Kim SH, Han YK, Kim YH, Hong SI (1992) Multifunctional initiation of lactide polymerization by stannous octoate/pentaerythritol. Makromol Chem 193(7):1623–1631. doi:10.1002/macp. 1992.021930706

    Article  CAS  Google Scholar 

  22. Kim SH, Han YK, Ahn KD, Kim YH, Chang T (1993) Preparation of star-shaped polylactide with pentaerythritol and stannous octoate. Makromol Chem 194(12):3229–3236. doi:10.1002/macp. 1993.021941202

    Article  CAS  Google Scholar 

  23. Atthoff B, Trollsås M, Claesson H, Hedrick JL (1999) Poly(lactides) with controlled molecular architecture initiated from hydroxyl functional dendrimers and the effect on the hydrodynamic volume. Macromol Chem Phys 200(6):1333–1339. doi:10.1002/(SICI)1521-3935(19990601

    Article  CAS  Google Scholar 

  24. Zhao YL, Cai Q, Jiang J, Shuai XT, Bei JZ, Chen CF, Xi F (2002) Synthesis and thermal properties of novel star-shaped poly(L-lactide)s with starburst PAMAM-OH dendrimer macroinitiator. Polymer 43(22):5819–5825. doi:10.1016/S0032-3861(02)00529-3

    Article  CAS  Google Scholar 

  25. Zhao YL, Shuai XT, Chen CF, Xi F (2004) Synthesis of star block copolymers from dendrimer initiators by combining ring-opening polymerization and atom transfer radical polymerization. Macromolecules 37(24):8854–8862. doi:10.1021/ma048303r

    Article  CAS  Google Scholar 

  26. Ni C, Zhu G, Zhu C, Yao B, Kumar DNT (2010) Studies on core-shell structural nano-micelles based on star block copolymer of poly(lactide) and poly(2-(dimethylamino)ethyl methacrylate). Colloid Polym Sci 288(10–11):1193–1200. doi:10.1007/s00396-010-2250-6

    Article  CAS  Google Scholar 

  27. Baney RH, Itoh M, Sakakibara A (1995) Silsesquioxanes. Chem Rev 95(5):1409–1430. doi:10.1021/cr00037a012

    Article  CAS  Google Scholar 

  28. Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110(4):2081–2173. doi:10.1021/cr900201r

    Article  CAS  Google Scholar 

  29. Schwab JJ, Lichtenhan JD (1998) Polyhedral oligomeric silsesquioxane (POSS)-based polymers. Appl Organomet Chem 12(10–11):707–713. doi:10.1002/(SICI)1099-0739(199810/11)

    Article  CAS  Google Scholar 

  30. Li G, Wang L, Ni H, Pittman JCU (2001) Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J Inorg Organome Polym 11(3):123–154. doi:10.1023/A:1015287910502

    Article  CAS  Google Scholar 

  31. Kuo SW, Chang FC (2011) POSS related polymer nanocomposites. Prog Polym Sci 36(12):1649–1696. doi:10.1016/j.progpolymsci.2011.05.002

    Article  CAS  Google Scholar 

  32. Kannan RY, Salacinski HJ, Butler PE, Seifalian AM (2005) Polyhedral oligomeric silsesquioxane nanocomposites: the next generation material for biomedical applications. Acc Chem Res 38(11):879–884. doi:10.1021/ar050055b

    Article  CAS  Google Scholar 

  33. Kannan RY, Salacinski HJ, De Groot J, Clatworthy I, Bozec L, Horton M, Butler PE, Seifalian AM (2006) The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite. Biomacromolecules 7(1):215–223. doi:10.1021/bm050590z

    Article  CAS  Google Scholar 

  34. Kannan RY, Salacinski HJ, Odlyha M, Butler PE, Seifalian AM (2006) The degradative resistance of polyhedral oligomeric silsesquioxane nanocore integrated polyurethanes: an in vitro study. Biomaterials 27(9):1971–1979. doi:10.1016/j.biomaterials.2005.10.006

    Article  CAS  Google Scholar 

  35. Kannan RY, Salacinski HJ, Edirisinghe MJ, Hamilton G, Seifalian AM (2006) Polyhedral oligomeric silsesquioxane-polyurethane nanocomposite microvessels for an artificial capillary bed. Biomaterials 27(26):4618–4626. doi:10.1016/j.biomaterials.2006.04.024

    Article  CAS  Google Scholar 

  36. Tan BH, Hussain H, Lin TT, Chua YC, Leong YW, Tjiu WW, Wong PK, He CB (2011) Stable dispersions of hybrid nanoparticles induced by stereocomplexation between enantiomeric poly(lactide) star polymers. Langmuir 27(17):10538–10547. doi:10.1021/la202110w

    Article  CAS  Google Scholar 

  37. Muranaka M, Kitamura Y, Yoshizawa H (2007) Preparation of biodegradable microspheres by anionic dispersion polymerization with PLA copolymeric dispersion stabilizer. Colloid Polym Sci 285(13):1441–1448. doi:10.1007/s00396-007-1701-1

    Article  CAS  Google Scholar 

  38. Shinoda H, Matyjaszewski K (2001) Structural control of poly(methyl methacrylate)-g-poly(lactic acid) graft copolymers by atom transfer radical polymerization (ATRP). Macromolecules 34(18):6243–6248. doi:10.1021/ma0105791

    Article  CAS  Google Scholar 

  39. Lim DW, Choi SH, Park TG (2000) A new class of biodegradable hydrogels stereocomplexed by enantiomeric oligo(lactide) side chains of poly(HEMA-g-OLA)s. Macromol Rapid Commun 21(8):464–471. doi:10.1002/(SICI)1521-3927(20000501)21:8<464::AID-MARC464>3.0.CO;2-#

    Article  CAS  Google Scholar 

  40. Zambaux MF, Bonneaux F, Gref R, Maincent P (1998) Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Control Release 50(1–3):31–40. doi:10.1016/S0168-3659(97)00106-5

    Article  CAS  Google Scholar 

  41. Zhang C, Laine RM (2000) Hydrosilylation of allyl alcohol with [HSiMe2OSiO1.5]8: octa(3-hydroxypropyldimethylsiloxy)octasilsesquioxane and its octamethacrylate derivative as potential precursors to hybrid nanocomposites. J Am Chem Soc 122(29):6979–6988. doi:10.1021/ja000318r

    Article  CAS  Google Scholar 

  42. Fu BX, Yang L, Somani RH, Zong SX, Hsiao BS, Phillips S, Blanski R, Ruth P (2001) Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions. J Polym Sci B Polym Phys 39(22):2727–2739. doi:10.1002/polb.10028

    Article  CAS  Google Scholar 

  43. Joshi M, Butola BS (2004) Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer 45(14):4953–4968. doi:10.1016/j.polymer.2004.04.057

    Article  CAS  Google Scholar 

  44. Ito F, Makino K (2004) Preparation and properties of monodispersed rifampicin-loaded poly(lactide-co-glycolide) microspheres. Colloids Surf B 39(1–2):17–21. doi:10.1016/j.colsurfb.2004.08.016

    Article  CAS  Google Scholar 

  45. Tomoda K, Makino K (2007) Effects of lung surfactants on rifampicin release rate from monodisperse rifampicin-loaded PLGA microspheres. Colloids Surf B 55(1):115–124. doi:10.1016/j.colsurfb.2006.11.030

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support by the National Natural Science Foundation of China (no. 20804041) and Grants Program for the Key Young Teachers in University of Henan Province (2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Wang, C., Fang, S. et al. Synthesis and characterization of well-defined star PLLA with a POSS core and their microspheres for controlled release. Colloid Polym Sci 291, 789–803 (2013). https://doi.org/10.1007/s00396-012-2790-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-012-2790-z

Keywords

Navigation